| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pi1co.p | ⊢ 𝑃  =  ( 𝐽  π1  𝐴 ) | 
						
							| 2 |  | pi1co.q | ⊢ 𝑄  =  ( 𝐾  π1  𝐵 ) | 
						
							| 3 |  | pi1co.v | ⊢ 𝑉  =  ( Base ‘ 𝑃 ) | 
						
							| 4 |  | pi1co.g | ⊢ 𝐺  =  ran  ( 𝑔  ∈  ∪  𝑉  ↦  〈 [ 𝑔 ] (  ≃ph ‘ 𝐽 ) ,  [ ( 𝐹  ∘  𝑔 ) ] (  ≃ph ‘ 𝐾 ) 〉 ) | 
						
							| 5 |  | pi1co.j | ⊢ ( 𝜑  →  𝐽  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 6 |  | pi1co.f | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝐽  Cn  𝐾 ) ) | 
						
							| 7 |  | pi1co.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑋 ) | 
						
							| 8 |  | pi1co.b | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝐴 )  =  𝐵 ) | 
						
							| 9 | 1 | pi1grp | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐴  ∈  𝑋 )  →  𝑃  ∈  Grp ) | 
						
							| 10 | 5 7 9 | syl2anc | ⊢ ( 𝜑  →  𝑃  ∈  Grp ) | 
						
							| 11 |  | cntop2 | ⊢ ( 𝐹  ∈  ( 𝐽  Cn  𝐾 )  →  𝐾  ∈  Top ) | 
						
							| 12 | 6 11 | syl | ⊢ ( 𝜑  →  𝐾  ∈  Top ) | 
						
							| 13 |  | toptopon2 | ⊢ ( 𝐾  ∈  Top  ↔  𝐾  ∈  ( TopOn ‘ ∪  𝐾 ) ) | 
						
							| 14 | 12 13 | sylib | ⊢ ( 𝜑  →  𝐾  ∈  ( TopOn ‘ ∪  𝐾 ) ) | 
						
							| 15 |  | cnf2 | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐾  ∈  ( TopOn ‘ ∪  𝐾 )  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  →  𝐹 : 𝑋 ⟶ ∪  𝐾 ) | 
						
							| 16 | 5 14 6 15 | syl3anc | ⊢ ( 𝜑  →  𝐹 : 𝑋 ⟶ ∪  𝐾 ) | 
						
							| 17 | 16 7 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝐴 )  ∈  ∪  𝐾 ) | 
						
							| 18 | 8 17 | eqeltrrd | ⊢ ( 𝜑  →  𝐵  ∈  ∪  𝐾 ) | 
						
							| 19 | 2 | pi1grp | ⊢ ( ( 𝐾  ∈  ( TopOn ‘ ∪  𝐾 )  ∧  𝐵  ∈  ∪  𝐾 )  →  𝑄  ∈  Grp ) | 
						
							| 20 | 14 18 19 | syl2anc | ⊢ ( 𝜑  →  𝑄  ∈  Grp ) | 
						
							| 21 | 1 2 3 4 5 6 7 8 | pi1cof | ⊢ ( 𝜑  →  𝐺 : 𝑉 ⟶ ( Base ‘ 𝑄 ) ) | 
						
							| 22 | 3 | a1i | ⊢ ( 𝜑  →  𝑉  =  ( Base ‘ 𝑃 ) ) | 
						
							| 23 | 1 5 7 22 | pi1bas2 | ⊢ ( 𝜑  →  𝑉  =  ( ∪  𝑉  /  (  ≃ph ‘ 𝐽 ) ) ) | 
						
							| 24 | 23 | eleq2d | ⊢ ( 𝜑  →  ( 𝑦  ∈  𝑉  ↔  𝑦  ∈  ( ∪  𝑉  /  (  ≃ph ‘ 𝐽 ) ) ) ) | 
						
							| 25 | 24 | biimpa | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑉 )  →  𝑦  ∈  ( ∪  𝑉  /  (  ≃ph ‘ 𝐽 ) ) ) | 
						
							| 26 |  | eqid | ⊢ ( ∪  𝑉  /  (  ≃ph ‘ 𝐽 ) )  =  ( ∪  𝑉  /  (  ≃ph ‘ 𝐽 ) ) | 
						
							| 27 |  | fvoveq1 | ⊢ ( [ 𝑓 ] (  ≃ph ‘ 𝐽 )  =  𝑦  →  ( 𝐺 ‘ ( [ 𝑓 ] (  ≃ph ‘ 𝐽 ) ( +g ‘ 𝑃 ) 𝑧 ) )  =  ( 𝐺 ‘ ( 𝑦 ( +g ‘ 𝑃 ) 𝑧 ) ) ) | 
						
							| 28 |  | fveq2 | ⊢ ( [ 𝑓 ] (  ≃ph ‘ 𝐽 )  =  𝑦  →  ( 𝐺 ‘ [ 𝑓 ] (  ≃ph ‘ 𝐽 ) )  =  ( 𝐺 ‘ 𝑦 ) ) | 
						
							| 29 | 28 | oveq1d | ⊢ ( [ 𝑓 ] (  ≃ph ‘ 𝐽 )  =  𝑦  →  ( ( 𝐺 ‘ [ 𝑓 ] (  ≃ph ‘ 𝐽 ) ) ( +g ‘ 𝑄 ) ( 𝐺 ‘ 𝑧 ) )  =  ( ( 𝐺 ‘ 𝑦 ) ( +g ‘ 𝑄 ) ( 𝐺 ‘ 𝑧 ) ) ) | 
						
							| 30 | 27 29 | eqeq12d | ⊢ ( [ 𝑓 ] (  ≃ph ‘ 𝐽 )  =  𝑦  →  ( ( 𝐺 ‘ ( [ 𝑓 ] (  ≃ph ‘ 𝐽 ) ( +g ‘ 𝑃 ) 𝑧 ) )  =  ( ( 𝐺 ‘ [ 𝑓 ] (  ≃ph ‘ 𝐽 ) ) ( +g ‘ 𝑄 ) ( 𝐺 ‘ 𝑧 ) )  ↔  ( 𝐺 ‘ ( 𝑦 ( +g ‘ 𝑃 ) 𝑧 ) )  =  ( ( 𝐺 ‘ 𝑦 ) ( +g ‘ 𝑄 ) ( 𝐺 ‘ 𝑧 ) ) ) ) | 
						
							| 31 | 30 | ralbidv | ⊢ ( [ 𝑓 ] (  ≃ph ‘ 𝐽 )  =  𝑦  →  ( ∀ 𝑧  ∈  𝑉 ( 𝐺 ‘ ( [ 𝑓 ] (  ≃ph ‘ 𝐽 ) ( +g ‘ 𝑃 ) 𝑧 ) )  =  ( ( 𝐺 ‘ [ 𝑓 ] (  ≃ph ‘ 𝐽 ) ) ( +g ‘ 𝑄 ) ( 𝐺 ‘ 𝑧 ) )  ↔  ∀ 𝑧  ∈  𝑉 ( 𝐺 ‘ ( 𝑦 ( +g ‘ 𝑃 ) 𝑧 ) )  =  ( ( 𝐺 ‘ 𝑦 ) ( +g ‘ 𝑄 ) ( 𝐺 ‘ 𝑧 ) ) ) ) | 
						
							| 32 |  | oveq2 | ⊢ ( [ ℎ ] (  ≃ph ‘ 𝐽 )  =  𝑧  →  ( [ 𝑓 ] (  ≃ph ‘ 𝐽 ) ( +g ‘ 𝑃 ) [ ℎ ] (  ≃ph ‘ 𝐽 ) )  =  ( [ 𝑓 ] (  ≃ph ‘ 𝐽 ) ( +g ‘ 𝑃 ) 𝑧 ) ) | 
						
							| 33 | 32 | fveq2d | ⊢ ( [ ℎ ] (  ≃ph ‘ 𝐽 )  =  𝑧  →  ( 𝐺 ‘ ( [ 𝑓 ] (  ≃ph ‘ 𝐽 ) ( +g ‘ 𝑃 ) [ ℎ ] (  ≃ph ‘ 𝐽 ) ) )  =  ( 𝐺 ‘ ( [ 𝑓 ] (  ≃ph ‘ 𝐽 ) ( +g ‘ 𝑃 ) 𝑧 ) ) ) | 
						
							| 34 |  | fveq2 | ⊢ ( [ ℎ ] (  ≃ph ‘ 𝐽 )  =  𝑧  →  ( 𝐺 ‘ [ ℎ ] (  ≃ph ‘ 𝐽 ) )  =  ( 𝐺 ‘ 𝑧 ) ) | 
						
							| 35 | 34 | oveq2d | ⊢ ( [ ℎ ] (  ≃ph ‘ 𝐽 )  =  𝑧  →  ( ( 𝐺 ‘ [ 𝑓 ] (  ≃ph ‘ 𝐽 ) ) ( +g ‘ 𝑄 ) ( 𝐺 ‘ [ ℎ ] (  ≃ph ‘ 𝐽 ) ) )  =  ( ( 𝐺 ‘ [ 𝑓 ] (  ≃ph ‘ 𝐽 ) ) ( +g ‘ 𝑄 ) ( 𝐺 ‘ 𝑧 ) ) ) | 
						
							| 36 | 33 35 | eqeq12d | ⊢ ( [ ℎ ] (  ≃ph ‘ 𝐽 )  =  𝑧  →  ( ( 𝐺 ‘ ( [ 𝑓 ] (  ≃ph ‘ 𝐽 ) ( +g ‘ 𝑃 ) [ ℎ ] (  ≃ph ‘ 𝐽 ) ) )  =  ( ( 𝐺 ‘ [ 𝑓 ] (  ≃ph ‘ 𝐽 ) ) ( +g ‘ 𝑄 ) ( 𝐺 ‘ [ ℎ ] (  ≃ph ‘ 𝐽 ) ) )  ↔  ( 𝐺 ‘ ( [ 𝑓 ] (  ≃ph ‘ 𝐽 ) ( +g ‘ 𝑃 ) 𝑧 ) )  =  ( ( 𝐺 ‘ [ 𝑓 ] (  ≃ph ‘ 𝐽 ) ) ( +g ‘ 𝑄 ) ( 𝐺 ‘ 𝑧 ) ) ) ) | 
						
							| 37 | 1 5 7 22 | pi1eluni | ⊢ ( 𝜑  →  ( 𝑓  ∈  ∪  𝑉  ↔  ( 𝑓  ∈  ( II  Cn  𝐽 )  ∧  ( 𝑓 ‘ 0 )  =  𝐴  ∧  ( 𝑓 ‘ 1 )  =  𝐴 ) ) ) | 
						
							| 38 | 37 | biimpa | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ∪  𝑉 )  →  ( 𝑓  ∈  ( II  Cn  𝐽 )  ∧  ( 𝑓 ‘ 0 )  =  𝐴  ∧  ( 𝑓 ‘ 1 )  =  𝐴 ) ) | 
						
							| 39 | 38 | simp1d | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ∪  𝑉 )  →  𝑓  ∈  ( II  Cn  𝐽 ) ) | 
						
							| 40 | 39 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑓  ∈  ∪  𝑉 )  ∧  ℎ  ∈  ∪  𝑉 )  →  𝑓  ∈  ( II  Cn  𝐽 ) ) | 
						
							| 41 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ∪  𝑉 )  →  𝐽  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 42 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ∪  𝑉 )  →  𝐴  ∈  𝑋 ) | 
						
							| 43 | 3 | a1i | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ∪  𝑉 )  →  𝑉  =  ( Base ‘ 𝑃 ) ) | 
						
							| 44 | 1 41 42 43 | pi1eluni | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ∪  𝑉 )  →  ( ℎ  ∈  ∪  𝑉  ↔  ( ℎ  ∈  ( II  Cn  𝐽 )  ∧  ( ℎ ‘ 0 )  =  𝐴  ∧  ( ℎ ‘ 1 )  =  𝐴 ) ) ) | 
						
							| 45 | 44 | biimpa | ⊢ ( ( ( 𝜑  ∧  𝑓  ∈  ∪  𝑉 )  ∧  ℎ  ∈  ∪  𝑉 )  →  ( ℎ  ∈  ( II  Cn  𝐽 )  ∧  ( ℎ ‘ 0 )  =  𝐴  ∧  ( ℎ ‘ 1 )  =  𝐴 ) ) | 
						
							| 46 | 45 | simp1d | ⊢ ( ( ( 𝜑  ∧  𝑓  ∈  ∪  𝑉 )  ∧  ℎ  ∈  ∪  𝑉 )  →  ℎ  ∈  ( II  Cn  𝐽 ) ) | 
						
							| 47 | 38 | simp3d | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ∪  𝑉 )  →  ( 𝑓 ‘ 1 )  =  𝐴 ) | 
						
							| 48 | 47 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑓  ∈  ∪  𝑉 )  ∧  ℎ  ∈  ∪  𝑉 )  →  ( 𝑓 ‘ 1 )  =  𝐴 ) | 
						
							| 49 | 45 | simp2d | ⊢ ( ( ( 𝜑  ∧  𝑓  ∈  ∪  𝑉 )  ∧  ℎ  ∈  ∪  𝑉 )  →  ( ℎ ‘ 0 )  =  𝐴 ) | 
						
							| 50 | 48 49 | eqtr4d | ⊢ ( ( ( 𝜑  ∧  𝑓  ∈  ∪  𝑉 )  ∧  ℎ  ∈  ∪  𝑉 )  →  ( 𝑓 ‘ 1 )  =  ( ℎ ‘ 0 ) ) | 
						
							| 51 | 6 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑓  ∈  ∪  𝑉 )  ∧  ℎ  ∈  ∪  𝑉 )  →  𝐹  ∈  ( 𝐽  Cn  𝐾 ) ) | 
						
							| 52 | 40 46 50 51 | copco | ⊢ ( ( ( 𝜑  ∧  𝑓  ∈  ∪  𝑉 )  ∧  ℎ  ∈  ∪  𝑉 )  →  ( 𝐹  ∘  ( 𝑓 ( *𝑝 ‘ 𝐽 ) ℎ ) )  =  ( ( 𝐹  ∘  𝑓 ) ( *𝑝 ‘ 𝐾 ) ( 𝐹  ∘  ℎ ) ) ) | 
						
							| 53 | 52 | eceq1d | ⊢ ( ( ( 𝜑  ∧  𝑓  ∈  ∪  𝑉 )  ∧  ℎ  ∈  ∪  𝑉 )  →  [ ( 𝐹  ∘  ( 𝑓 ( *𝑝 ‘ 𝐽 ) ℎ ) ) ] (  ≃ph ‘ 𝐾 )  =  [ ( ( 𝐹  ∘  𝑓 ) ( *𝑝 ‘ 𝐾 ) ( 𝐹  ∘  ℎ ) ) ] (  ≃ph ‘ 𝐾 ) ) | 
						
							| 54 | 40 46 50 | pcocn | ⊢ ( ( ( 𝜑  ∧  𝑓  ∈  ∪  𝑉 )  ∧  ℎ  ∈  ∪  𝑉 )  →  ( 𝑓 ( *𝑝 ‘ 𝐽 ) ℎ )  ∈  ( II  Cn  𝐽 ) ) | 
						
							| 55 | 40 46 | pco0 | ⊢ ( ( ( 𝜑  ∧  𝑓  ∈  ∪  𝑉 )  ∧  ℎ  ∈  ∪  𝑉 )  →  ( ( 𝑓 ( *𝑝 ‘ 𝐽 ) ℎ ) ‘ 0 )  =  ( 𝑓 ‘ 0 ) ) | 
						
							| 56 | 38 | simp2d | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ∪  𝑉 )  →  ( 𝑓 ‘ 0 )  =  𝐴 ) | 
						
							| 57 | 56 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑓  ∈  ∪  𝑉 )  ∧  ℎ  ∈  ∪  𝑉 )  →  ( 𝑓 ‘ 0 )  =  𝐴 ) | 
						
							| 58 | 55 57 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑓  ∈  ∪  𝑉 )  ∧  ℎ  ∈  ∪  𝑉 )  →  ( ( 𝑓 ( *𝑝 ‘ 𝐽 ) ℎ ) ‘ 0 )  =  𝐴 ) | 
						
							| 59 | 40 46 | pco1 | ⊢ ( ( ( 𝜑  ∧  𝑓  ∈  ∪  𝑉 )  ∧  ℎ  ∈  ∪  𝑉 )  →  ( ( 𝑓 ( *𝑝 ‘ 𝐽 ) ℎ ) ‘ 1 )  =  ( ℎ ‘ 1 ) ) | 
						
							| 60 | 45 | simp3d | ⊢ ( ( ( 𝜑  ∧  𝑓  ∈  ∪  𝑉 )  ∧  ℎ  ∈  ∪  𝑉 )  →  ( ℎ ‘ 1 )  =  𝐴 ) | 
						
							| 61 | 59 60 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑓  ∈  ∪  𝑉 )  ∧  ℎ  ∈  ∪  𝑉 )  →  ( ( 𝑓 ( *𝑝 ‘ 𝐽 ) ℎ ) ‘ 1 )  =  𝐴 ) | 
						
							| 62 | 5 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑓  ∈  ∪  𝑉 )  ∧  ℎ  ∈  ∪  𝑉 )  →  𝐽  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 63 | 7 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑓  ∈  ∪  𝑉 )  ∧  ℎ  ∈  ∪  𝑉 )  →  𝐴  ∈  𝑋 ) | 
						
							| 64 | 3 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑓  ∈  ∪  𝑉 )  ∧  ℎ  ∈  ∪  𝑉 )  →  𝑉  =  ( Base ‘ 𝑃 ) ) | 
						
							| 65 | 1 62 63 64 | pi1eluni | ⊢ ( ( ( 𝜑  ∧  𝑓  ∈  ∪  𝑉 )  ∧  ℎ  ∈  ∪  𝑉 )  →  ( ( 𝑓 ( *𝑝 ‘ 𝐽 ) ℎ )  ∈  ∪  𝑉  ↔  ( ( 𝑓 ( *𝑝 ‘ 𝐽 ) ℎ )  ∈  ( II  Cn  𝐽 )  ∧  ( ( 𝑓 ( *𝑝 ‘ 𝐽 ) ℎ ) ‘ 0 )  =  𝐴  ∧  ( ( 𝑓 ( *𝑝 ‘ 𝐽 ) ℎ ) ‘ 1 )  =  𝐴 ) ) ) | 
						
							| 66 | 54 58 61 65 | mpbir3and | ⊢ ( ( ( 𝜑  ∧  𝑓  ∈  ∪  𝑉 )  ∧  ℎ  ∈  ∪  𝑉 )  →  ( 𝑓 ( *𝑝 ‘ 𝐽 ) ℎ )  ∈  ∪  𝑉 ) | 
						
							| 67 | 1 2 3 4 5 6 7 8 | pi1coval | ⊢ ( ( 𝜑  ∧  ( 𝑓 ( *𝑝 ‘ 𝐽 ) ℎ )  ∈  ∪  𝑉 )  →  ( 𝐺 ‘ [ ( 𝑓 ( *𝑝 ‘ 𝐽 ) ℎ ) ] (  ≃ph ‘ 𝐽 ) )  =  [ ( 𝐹  ∘  ( 𝑓 ( *𝑝 ‘ 𝐽 ) ℎ ) ) ] (  ≃ph ‘ 𝐾 ) ) | 
						
							| 68 | 67 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑓  ∈  ∪  𝑉 )  ∧  ( 𝑓 ( *𝑝 ‘ 𝐽 ) ℎ )  ∈  ∪  𝑉 )  →  ( 𝐺 ‘ [ ( 𝑓 ( *𝑝 ‘ 𝐽 ) ℎ ) ] (  ≃ph ‘ 𝐽 ) )  =  [ ( 𝐹  ∘  ( 𝑓 ( *𝑝 ‘ 𝐽 ) ℎ ) ) ] (  ≃ph ‘ 𝐾 ) ) | 
						
							| 69 | 66 68 | syldan | ⊢ ( ( ( 𝜑  ∧  𝑓  ∈  ∪  𝑉 )  ∧  ℎ  ∈  ∪  𝑉 )  →  ( 𝐺 ‘ [ ( 𝑓 ( *𝑝 ‘ 𝐽 ) ℎ ) ] (  ≃ph ‘ 𝐽 ) )  =  [ ( 𝐹  ∘  ( 𝑓 ( *𝑝 ‘ 𝐽 ) ℎ ) ) ] (  ≃ph ‘ 𝐾 ) ) | 
						
							| 70 |  | eqid | ⊢ ( Base ‘ 𝑄 )  =  ( Base ‘ 𝑄 ) | 
						
							| 71 | 14 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑓  ∈  ∪  𝑉 )  ∧  ℎ  ∈  ∪  𝑉 )  →  𝐾  ∈  ( TopOn ‘ ∪  𝐾 ) ) | 
						
							| 72 | 18 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑓  ∈  ∪  𝑉 )  ∧  ℎ  ∈  ∪  𝑉 )  →  𝐵  ∈  ∪  𝐾 ) | 
						
							| 73 |  | eqid | ⊢ ( +g ‘ 𝑄 )  =  ( +g ‘ 𝑄 ) | 
						
							| 74 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ∪  𝑉 )  →  𝐹  ∈  ( 𝐽  Cn  𝐾 ) ) | 
						
							| 75 |  | cnco | ⊢ ( ( 𝑓  ∈  ( II  Cn  𝐽 )  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  →  ( 𝐹  ∘  𝑓 )  ∈  ( II  Cn  𝐾 ) ) | 
						
							| 76 | 39 74 75 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ∪  𝑉 )  →  ( 𝐹  ∘  𝑓 )  ∈  ( II  Cn  𝐾 ) ) | 
						
							| 77 |  | iitopon | ⊢ II  ∈  ( TopOn ‘ ( 0 [,] 1 ) ) | 
						
							| 78 |  | cnf2 | ⊢ ( ( II  ∈  ( TopOn ‘ ( 0 [,] 1 ) )  ∧  𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝑓  ∈  ( II  Cn  𝐽 ) )  →  𝑓 : ( 0 [,] 1 ) ⟶ 𝑋 ) | 
						
							| 79 | 77 41 39 78 | mp3an2i | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ∪  𝑉 )  →  𝑓 : ( 0 [,] 1 ) ⟶ 𝑋 ) | 
						
							| 80 |  | 0elunit | ⊢ 0  ∈  ( 0 [,] 1 ) | 
						
							| 81 |  | fvco3 | ⊢ ( ( 𝑓 : ( 0 [,] 1 ) ⟶ 𝑋  ∧  0  ∈  ( 0 [,] 1 ) )  →  ( ( 𝐹  ∘  𝑓 ) ‘ 0 )  =  ( 𝐹 ‘ ( 𝑓 ‘ 0 ) ) ) | 
						
							| 82 | 79 80 81 | sylancl | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ∪  𝑉 )  →  ( ( 𝐹  ∘  𝑓 ) ‘ 0 )  =  ( 𝐹 ‘ ( 𝑓 ‘ 0 ) ) ) | 
						
							| 83 | 56 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ∪  𝑉 )  →  ( 𝐹 ‘ ( 𝑓 ‘ 0 ) )  =  ( 𝐹 ‘ 𝐴 ) ) | 
						
							| 84 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ∪  𝑉 )  →  ( 𝐹 ‘ 𝐴 )  =  𝐵 ) | 
						
							| 85 | 82 83 84 | 3eqtrd | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ∪  𝑉 )  →  ( ( 𝐹  ∘  𝑓 ) ‘ 0 )  =  𝐵 ) | 
						
							| 86 |  | 1elunit | ⊢ 1  ∈  ( 0 [,] 1 ) | 
						
							| 87 |  | fvco3 | ⊢ ( ( 𝑓 : ( 0 [,] 1 ) ⟶ 𝑋  ∧  1  ∈  ( 0 [,] 1 ) )  →  ( ( 𝐹  ∘  𝑓 ) ‘ 1 )  =  ( 𝐹 ‘ ( 𝑓 ‘ 1 ) ) ) | 
						
							| 88 | 79 86 87 | sylancl | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ∪  𝑉 )  →  ( ( 𝐹  ∘  𝑓 ) ‘ 1 )  =  ( 𝐹 ‘ ( 𝑓 ‘ 1 ) ) ) | 
						
							| 89 | 47 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ∪  𝑉 )  →  ( 𝐹 ‘ ( 𝑓 ‘ 1 ) )  =  ( 𝐹 ‘ 𝐴 ) ) | 
						
							| 90 | 88 89 84 | 3eqtrd | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ∪  𝑉 )  →  ( ( 𝐹  ∘  𝑓 ) ‘ 1 )  =  𝐵 ) | 
						
							| 91 | 14 | adantr | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ∪  𝑉 )  →  𝐾  ∈  ( TopOn ‘ ∪  𝐾 ) ) | 
						
							| 92 | 18 | adantr | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ∪  𝑉 )  →  𝐵  ∈  ∪  𝐾 ) | 
						
							| 93 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ∪  𝑉 )  →  ( Base ‘ 𝑄 )  =  ( Base ‘ 𝑄 ) ) | 
						
							| 94 | 2 91 92 93 | pi1eluni | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ∪  𝑉 )  →  ( ( 𝐹  ∘  𝑓 )  ∈  ∪  ( Base ‘ 𝑄 )  ↔  ( ( 𝐹  ∘  𝑓 )  ∈  ( II  Cn  𝐾 )  ∧  ( ( 𝐹  ∘  𝑓 ) ‘ 0 )  =  𝐵  ∧  ( ( 𝐹  ∘  𝑓 ) ‘ 1 )  =  𝐵 ) ) ) | 
						
							| 95 | 76 85 90 94 | mpbir3and | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ∪  𝑉 )  →  ( 𝐹  ∘  𝑓 )  ∈  ∪  ( Base ‘ 𝑄 ) ) | 
						
							| 96 | 95 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑓  ∈  ∪  𝑉 )  ∧  ℎ  ∈  ∪  𝑉 )  →  ( 𝐹  ∘  𝑓 )  ∈  ∪  ( Base ‘ 𝑄 ) ) | 
						
							| 97 |  | cnco | ⊢ ( ( ℎ  ∈  ( II  Cn  𝐽 )  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  →  ( 𝐹  ∘  ℎ )  ∈  ( II  Cn  𝐾 ) ) | 
						
							| 98 | 46 51 97 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑓  ∈  ∪  𝑉 )  ∧  ℎ  ∈  ∪  𝑉 )  →  ( 𝐹  ∘  ℎ )  ∈  ( II  Cn  𝐾 ) ) | 
						
							| 99 |  | cnf2 | ⊢ ( ( II  ∈  ( TopOn ‘ ( 0 [,] 1 ) )  ∧  𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  ℎ  ∈  ( II  Cn  𝐽 ) )  →  ℎ : ( 0 [,] 1 ) ⟶ 𝑋 ) | 
						
							| 100 | 77 62 46 99 | mp3an2i | ⊢ ( ( ( 𝜑  ∧  𝑓  ∈  ∪  𝑉 )  ∧  ℎ  ∈  ∪  𝑉 )  →  ℎ : ( 0 [,] 1 ) ⟶ 𝑋 ) | 
						
							| 101 |  | fvco3 | ⊢ ( ( ℎ : ( 0 [,] 1 ) ⟶ 𝑋  ∧  0  ∈  ( 0 [,] 1 ) )  →  ( ( 𝐹  ∘  ℎ ) ‘ 0 )  =  ( 𝐹 ‘ ( ℎ ‘ 0 ) ) ) | 
						
							| 102 | 100 80 101 | sylancl | ⊢ ( ( ( 𝜑  ∧  𝑓  ∈  ∪  𝑉 )  ∧  ℎ  ∈  ∪  𝑉 )  →  ( ( 𝐹  ∘  ℎ ) ‘ 0 )  =  ( 𝐹 ‘ ( ℎ ‘ 0 ) ) ) | 
						
							| 103 | 49 | fveq2d | ⊢ ( ( ( 𝜑  ∧  𝑓  ∈  ∪  𝑉 )  ∧  ℎ  ∈  ∪  𝑉 )  →  ( 𝐹 ‘ ( ℎ ‘ 0 ) )  =  ( 𝐹 ‘ 𝐴 ) ) | 
						
							| 104 | 8 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑓  ∈  ∪  𝑉 )  ∧  ℎ  ∈  ∪  𝑉 )  →  ( 𝐹 ‘ 𝐴 )  =  𝐵 ) | 
						
							| 105 | 102 103 104 | 3eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑓  ∈  ∪  𝑉 )  ∧  ℎ  ∈  ∪  𝑉 )  →  ( ( 𝐹  ∘  ℎ ) ‘ 0 )  =  𝐵 ) | 
						
							| 106 |  | fvco3 | ⊢ ( ( ℎ : ( 0 [,] 1 ) ⟶ 𝑋  ∧  1  ∈  ( 0 [,] 1 ) )  →  ( ( 𝐹  ∘  ℎ ) ‘ 1 )  =  ( 𝐹 ‘ ( ℎ ‘ 1 ) ) ) | 
						
							| 107 | 100 86 106 | sylancl | ⊢ ( ( ( 𝜑  ∧  𝑓  ∈  ∪  𝑉 )  ∧  ℎ  ∈  ∪  𝑉 )  →  ( ( 𝐹  ∘  ℎ ) ‘ 1 )  =  ( 𝐹 ‘ ( ℎ ‘ 1 ) ) ) | 
						
							| 108 | 60 | fveq2d | ⊢ ( ( ( 𝜑  ∧  𝑓  ∈  ∪  𝑉 )  ∧  ℎ  ∈  ∪  𝑉 )  →  ( 𝐹 ‘ ( ℎ ‘ 1 ) )  =  ( 𝐹 ‘ 𝐴 ) ) | 
						
							| 109 | 107 108 104 | 3eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑓  ∈  ∪  𝑉 )  ∧  ℎ  ∈  ∪  𝑉 )  →  ( ( 𝐹  ∘  ℎ ) ‘ 1 )  =  𝐵 ) | 
						
							| 110 |  | eqidd | ⊢ ( 𝜑  →  ( Base ‘ 𝑄 )  =  ( Base ‘ 𝑄 ) ) | 
						
							| 111 | 2 14 18 110 | pi1eluni | ⊢ ( 𝜑  →  ( ( 𝐹  ∘  ℎ )  ∈  ∪  ( Base ‘ 𝑄 )  ↔  ( ( 𝐹  ∘  ℎ )  ∈  ( II  Cn  𝐾 )  ∧  ( ( 𝐹  ∘  ℎ ) ‘ 0 )  =  𝐵  ∧  ( ( 𝐹  ∘  ℎ ) ‘ 1 )  =  𝐵 ) ) ) | 
						
							| 112 | 111 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑓  ∈  ∪  𝑉 )  ∧  ℎ  ∈  ∪  𝑉 )  →  ( ( 𝐹  ∘  ℎ )  ∈  ∪  ( Base ‘ 𝑄 )  ↔  ( ( 𝐹  ∘  ℎ )  ∈  ( II  Cn  𝐾 )  ∧  ( ( 𝐹  ∘  ℎ ) ‘ 0 )  =  𝐵  ∧  ( ( 𝐹  ∘  ℎ ) ‘ 1 )  =  𝐵 ) ) ) | 
						
							| 113 | 98 105 109 112 | mpbir3and | ⊢ ( ( ( 𝜑  ∧  𝑓  ∈  ∪  𝑉 )  ∧  ℎ  ∈  ∪  𝑉 )  →  ( 𝐹  ∘  ℎ )  ∈  ∪  ( Base ‘ 𝑄 ) ) | 
						
							| 114 | 2 70 71 72 73 96 113 | pi1addval | ⊢ ( ( ( 𝜑  ∧  𝑓  ∈  ∪  𝑉 )  ∧  ℎ  ∈  ∪  𝑉 )  →  ( [ ( 𝐹  ∘  𝑓 ) ] (  ≃ph ‘ 𝐾 ) ( +g ‘ 𝑄 ) [ ( 𝐹  ∘  ℎ ) ] (  ≃ph ‘ 𝐾 ) )  =  [ ( ( 𝐹  ∘  𝑓 ) ( *𝑝 ‘ 𝐾 ) ( 𝐹  ∘  ℎ ) ) ] (  ≃ph ‘ 𝐾 ) ) | 
						
							| 115 | 53 69 114 | 3eqtr4d | ⊢ ( ( ( 𝜑  ∧  𝑓  ∈  ∪  𝑉 )  ∧  ℎ  ∈  ∪  𝑉 )  →  ( 𝐺 ‘ [ ( 𝑓 ( *𝑝 ‘ 𝐽 ) ℎ ) ] (  ≃ph ‘ 𝐽 ) )  =  ( [ ( 𝐹  ∘  𝑓 ) ] (  ≃ph ‘ 𝐾 ) ( +g ‘ 𝑄 ) [ ( 𝐹  ∘  ℎ ) ] (  ≃ph ‘ 𝐾 ) ) ) | 
						
							| 116 |  | eqid | ⊢ ( +g ‘ 𝑃 )  =  ( +g ‘ 𝑃 ) | 
						
							| 117 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑓  ∈  ∪  𝑉 )  ∧  ℎ  ∈  ∪  𝑉 )  →  𝑓  ∈  ∪  𝑉 ) | 
						
							| 118 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑓  ∈  ∪  𝑉 )  ∧  ℎ  ∈  ∪  𝑉 )  →  ℎ  ∈  ∪  𝑉 ) | 
						
							| 119 | 1 3 62 63 116 117 118 | pi1addval | ⊢ ( ( ( 𝜑  ∧  𝑓  ∈  ∪  𝑉 )  ∧  ℎ  ∈  ∪  𝑉 )  →  ( [ 𝑓 ] (  ≃ph ‘ 𝐽 ) ( +g ‘ 𝑃 ) [ ℎ ] (  ≃ph ‘ 𝐽 ) )  =  [ ( 𝑓 ( *𝑝 ‘ 𝐽 ) ℎ ) ] (  ≃ph ‘ 𝐽 ) ) | 
						
							| 120 | 119 | fveq2d | ⊢ ( ( ( 𝜑  ∧  𝑓  ∈  ∪  𝑉 )  ∧  ℎ  ∈  ∪  𝑉 )  →  ( 𝐺 ‘ ( [ 𝑓 ] (  ≃ph ‘ 𝐽 ) ( +g ‘ 𝑃 ) [ ℎ ] (  ≃ph ‘ 𝐽 ) ) )  =  ( 𝐺 ‘ [ ( 𝑓 ( *𝑝 ‘ 𝐽 ) ℎ ) ] (  ≃ph ‘ 𝐽 ) ) ) | 
						
							| 121 | 1 2 3 4 5 6 7 8 | pi1coval | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ∪  𝑉 )  →  ( 𝐺 ‘ [ 𝑓 ] (  ≃ph ‘ 𝐽 ) )  =  [ ( 𝐹  ∘  𝑓 ) ] (  ≃ph ‘ 𝐾 ) ) | 
						
							| 122 | 121 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑓  ∈  ∪  𝑉 )  ∧  ℎ  ∈  ∪  𝑉 )  →  ( 𝐺 ‘ [ 𝑓 ] (  ≃ph ‘ 𝐽 ) )  =  [ ( 𝐹  ∘  𝑓 ) ] (  ≃ph ‘ 𝐾 ) ) | 
						
							| 123 | 1 2 3 4 5 6 7 8 | pi1coval | ⊢ ( ( 𝜑  ∧  ℎ  ∈  ∪  𝑉 )  →  ( 𝐺 ‘ [ ℎ ] (  ≃ph ‘ 𝐽 ) )  =  [ ( 𝐹  ∘  ℎ ) ] (  ≃ph ‘ 𝐾 ) ) | 
						
							| 124 | 123 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑓  ∈  ∪  𝑉 )  ∧  ℎ  ∈  ∪  𝑉 )  →  ( 𝐺 ‘ [ ℎ ] (  ≃ph ‘ 𝐽 ) )  =  [ ( 𝐹  ∘  ℎ ) ] (  ≃ph ‘ 𝐾 ) ) | 
						
							| 125 | 122 124 | oveq12d | ⊢ ( ( ( 𝜑  ∧  𝑓  ∈  ∪  𝑉 )  ∧  ℎ  ∈  ∪  𝑉 )  →  ( ( 𝐺 ‘ [ 𝑓 ] (  ≃ph ‘ 𝐽 ) ) ( +g ‘ 𝑄 ) ( 𝐺 ‘ [ ℎ ] (  ≃ph ‘ 𝐽 ) ) )  =  ( [ ( 𝐹  ∘  𝑓 ) ] (  ≃ph ‘ 𝐾 ) ( +g ‘ 𝑄 ) [ ( 𝐹  ∘  ℎ ) ] (  ≃ph ‘ 𝐾 ) ) ) | 
						
							| 126 | 115 120 125 | 3eqtr4d | ⊢ ( ( ( 𝜑  ∧  𝑓  ∈  ∪  𝑉 )  ∧  ℎ  ∈  ∪  𝑉 )  →  ( 𝐺 ‘ ( [ 𝑓 ] (  ≃ph ‘ 𝐽 ) ( +g ‘ 𝑃 ) [ ℎ ] (  ≃ph ‘ 𝐽 ) ) )  =  ( ( 𝐺 ‘ [ 𝑓 ] (  ≃ph ‘ 𝐽 ) ) ( +g ‘ 𝑄 ) ( 𝐺 ‘ [ ℎ ] (  ≃ph ‘ 𝐽 ) ) ) ) | 
						
							| 127 | 26 36 126 | ectocld | ⊢ ( ( ( 𝜑  ∧  𝑓  ∈  ∪  𝑉 )  ∧  𝑧  ∈  ( ∪  𝑉  /  (  ≃ph ‘ 𝐽 ) ) )  →  ( 𝐺 ‘ ( [ 𝑓 ] (  ≃ph ‘ 𝐽 ) ( +g ‘ 𝑃 ) 𝑧 ) )  =  ( ( 𝐺 ‘ [ 𝑓 ] (  ≃ph ‘ 𝐽 ) ) ( +g ‘ 𝑄 ) ( 𝐺 ‘ 𝑧 ) ) ) | 
						
							| 128 | 127 | ralrimiva | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ∪  𝑉 )  →  ∀ 𝑧  ∈  ( ∪  𝑉  /  (  ≃ph ‘ 𝐽 ) ) ( 𝐺 ‘ ( [ 𝑓 ] (  ≃ph ‘ 𝐽 ) ( +g ‘ 𝑃 ) 𝑧 ) )  =  ( ( 𝐺 ‘ [ 𝑓 ] (  ≃ph ‘ 𝐽 ) ) ( +g ‘ 𝑄 ) ( 𝐺 ‘ 𝑧 ) ) ) | 
						
							| 129 | 23 | adantr | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ∪  𝑉 )  →  𝑉  =  ( ∪  𝑉  /  (  ≃ph ‘ 𝐽 ) ) ) | 
						
							| 130 | 128 129 | raleqtrrdv | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ∪  𝑉 )  →  ∀ 𝑧  ∈  𝑉 ( 𝐺 ‘ ( [ 𝑓 ] (  ≃ph ‘ 𝐽 ) ( +g ‘ 𝑃 ) 𝑧 ) )  =  ( ( 𝐺 ‘ [ 𝑓 ] (  ≃ph ‘ 𝐽 ) ) ( +g ‘ 𝑄 ) ( 𝐺 ‘ 𝑧 ) ) ) | 
						
							| 131 | 26 31 130 | ectocld | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( ∪  𝑉  /  (  ≃ph ‘ 𝐽 ) ) )  →  ∀ 𝑧  ∈  𝑉 ( 𝐺 ‘ ( 𝑦 ( +g ‘ 𝑃 ) 𝑧 ) )  =  ( ( 𝐺 ‘ 𝑦 ) ( +g ‘ 𝑄 ) ( 𝐺 ‘ 𝑧 ) ) ) | 
						
							| 132 | 25 131 | syldan | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑉 )  →  ∀ 𝑧  ∈  𝑉 ( 𝐺 ‘ ( 𝑦 ( +g ‘ 𝑃 ) 𝑧 ) )  =  ( ( 𝐺 ‘ 𝑦 ) ( +g ‘ 𝑄 ) ( 𝐺 ‘ 𝑧 ) ) ) | 
						
							| 133 | 132 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑦  ∈  𝑉 ∀ 𝑧  ∈  𝑉 ( 𝐺 ‘ ( 𝑦 ( +g ‘ 𝑃 ) 𝑧 ) )  =  ( ( 𝐺 ‘ 𝑦 ) ( +g ‘ 𝑄 ) ( 𝐺 ‘ 𝑧 ) ) ) | 
						
							| 134 | 21 133 | jca | ⊢ ( 𝜑  →  ( 𝐺 : 𝑉 ⟶ ( Base ‘ 𝑄 )  ∧  ∀ 𝑦  ∈  𝑉 ∀ 𝑧  ∈  𝑉 ( 𝐺 ‘ ( 𝑦 ( +g ‘ 𝑃 ) 𝑧 ) )  =  ( ( 𝐺 ‘ 𝑦 ) ( +g ‘ 𝑄 ) ( 𝐺 ‘ 𝑧 ) ) ) ) | 
						
							| 135 | 3 70 116 73 | isghm | ⊢ ( 𝐺  ∈  ( 𝑃  GrpHom  𝑄 )  ↔  ( ( 𝑃  ∈  Grp  ∧  𝑄  ∈  Grp )  ∧  ( 𝐺 : 𝑉 ⟶ ( Base ‘ 𝑄 )  ∧  ∀ 𝑦  ∈  𝑉 ∀ 𝑧  ∈  𝑉 ( 𝐺 ‘ ( 𝑦 ( +g ‘ 𝑃 ) 𝑧 ) )  =  ( ( 𝐺 ‘ 𝑦 ) ( +g ‘ 𝑄 ) ( 𝐺 ‘ 𝑧 ) ) ) ) ) | 
						
							| 136 | 10 20 134 135 | syl21anbrc | ⊢ ( 𝜑  →  𝐺  ∈  ( 𝑃  GrpHom  𝑄 ) ) |