| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pi1co.p |
⊢ 𝑃 = ( 𝐽 π1 𝐴 ) |
| 2 |
|
pi1co.q |
⊢ 𝑄 = ( 𝐾 π1 𝐵 ) |
| 3 |
|
pi1co.v |
⊢ 𝑉 = ( Base ‘ 𝑃 ) |
| 4 |
|
pi1co.g |
⊢ 𝐺 = ran ( 𝑔 ∈ ∪ 𝑉 ↦ 〈 [ 𝑔 ] ( ≃ph ‘ 𝐽 ) , [ ( 𝐹 ∘ 𝑔 ) ] ( ≃ph ‘ 𝐾 ) 〉 ) |
| 5 |
|
pi1co.j |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 6 |
|
pi1co.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) |
| 7 |
|
pi1co.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) |
| 8 |
|
pi1co.b |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) = 𝐵 ) |
| 9 |
1
|
pi1grp |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → 𝑃 ∈ Grp ) |
| 10 |
5 7 9
|
syl2anc |
⊢ ( 𝜑 → 𝑃 ∈ Grp ) |
| 11 |
|
cntop2 |
⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐾 ∈ Top ) |
| 12 |
6 11
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ Top ) |
| 13 |
|
toptopon2 |
⊢ ( 𝐾 ∈ Top ↔ 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ) |
| 14 |
12 13
|
sylib |
⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ) |
| 15 |
|
cnf2 |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → 𝐹 : 𝑋 ⟶ ∪ 𝐾 ) |
| 16 |
5 14 6 15
|
syl3anc |
⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ∪ 𝐾 ) |
| 17 |
16 7
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) ∈ ∪ 𝐾 ) |
| 18 |
8 17
|
eqeltrrd |
⊢ ( 𝜑 → 𝐵 ∈ ∪ 𝐾 ) |
| 19 |
2
|
pi1grp |
⊢ ( ( 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ∧ 𝐵 ∈ ∪ 𝐾 ) → 𝑄 ∈ Grp ) |
| 20 |
14 18 19
|
syl2anc |
⊢ ( 𝜑 → 𝑄 ∈ Grp ) |
| 21 |
1 2 3 4 5 6 7 8
|
pi1cof |
⊢ ( 𝜑 → 𝐺 : 𝑉 ⟶ ( Base ‘ 𝑄 ) ) |
| 22 |
3
|
a1i |
⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝑃 ) ) |
| 23 |
1 5 7 22
|
pi1bas2 |
⊢ ( 𝜑 → 𝑉 = ( ∪ 𝑉 / ( ≃ph ‘ 𝐽 ) ) ) |
| 24 |
23
|
eleq2d |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝑉 ↔ 𝑦 ∈ ( ∪ 𝑉 / ( ≃ph ‘ 𝐽 ) ) ) ) |
| 25 |
24
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑉 ) → 𝑦 ∈ ( ∪ 𝑉 / ( ≃ph ‘ 𝐽 ) ) ) |
| 26 |
|
eqid |
⊢ ( ∪ 𝑉 / ( ≃ph ‘ 𝐽 ) ) = ( ∪ 𝑉 / ( ≃ph ‘ 𝐽 ) ) |
| 27 |
|
fvoveq1 |
⊢ ( [ 𝑓 ] ( ≃ph ‘ 𝐽 ) = 𝑦 → ( 𝐺 ‘ ( [ 𝑓 ] ( ≃ph ‘ 𝐽 ) ( +g ‘ 𝑃 ) 𝑧 ) ) = ( 𝐺 ‘ ( 𝑦 ( +g ‘ 𝑃 ) 𝑧 ) ) ) |
| 28 |
|
fveq2 |
⊢ ( [ 𝑓 ] ( ≃ph ‘ 𝐽 ) = 𝑦 → ( 𝐺 ‘ [ 𝑓 ] ( ≃ph ‘ 𝐽 ) ) = ( 𝐺 ‘ 𝑦 ) ) |
| 29 |
28
|
oveq1d |
⊢ ( [ 𝑓 ] ( ≃ph ‘ 𝐽 ) = 𝑦 → ( ( 𝐺 ‘ [ 𝑓 ] ( ≃ph ‘ 𝐽 ) ) ( +g ‘ 𝑄 ) ( 𝐺 ‘ 𝑧 ) ) = ( ( 𝐺 ‘ 𝑦 ) ( +g ‘ 𝑄 ) ( 𝐺 ‘ 𝑧 ) ) ) |
| 30 |
27 29
|
eqeq12d |
⊢ ( [ 𝑓 ] ( ≃ph ‘ 𝐽 ) = 𝑦 → ( ( 𝐺 ‘ ( [ 𝑓 ] ( ≃ph ‘ 𝐽 ) ( +g ‘ 𝑃 ) 𝑧 ) ) = ( ( 𝐺 ‘ [ 𝑓 ] ( ≃ph ‘ 𝐽 ) ) ( +g ‘ 𝑄 ) ( 𝐺 ‘ 𝑧 ) ) ↔ ( 𝐺 ‘ ( 𝑦 ( +g ‘ 𝑃 ) 𝑧 ) ) = ( ( 𝐺 ‘ 𝑦 ) ( +g ‘ 𝑄 ) ( 𝐺 ‘ 𝑧 ) ) ) ) |
| 31 |
30
|
ralbidv |
⊢ ( [ 𝑓 ] ( ≃ph ‘ 𝐽 ) = 𝑦 → ( ∀ 𝑧 ∈ 𝑉 ( 𝐺 ‘ ( [ 𝑓 ] ( ≃ph ‘ 𝐽 ) ( +g ‘ 𝑃 ) 𝑧 ) ) = ( ( 𝐺 ‘ [ 𝑓 ] ( ≃ph ‘ 𝐽 ) ) ( +g ‘ 𝑄 ) ( 𝐺 ‘ 𝑧 ) ) ↔ ∀ 𝑧 ∈ 𝑉 ( 𝐺 ‘ ( 𝑦 ( +g ‘ 𝑃 ) 𝑧 ) ) = ( ( 𝐺 ‘ 𝑦 ) ( +g ‘ 𝑄 ) ( 𝐺 ‘ 𝑧 ) ) ) ) |
| 32 |
|
oveq2 |
⊢ ( [ ℎ ] ( ≃ph ‘ 𝐽 ) = 𝑧 → ( [ 𝑓 ] ( ≃ph ‘ 𝐽 ) ( +g ‘ 𝑃 ) [ ℎ ] ( ≃ph ‘ 𝐽 ) ) = ( [ 𝑓 ] ( ≃ph ‘ 𝐽 ) ( +g ‘ 𝑃 ) 𝑧 ) ) |
| 33 |
32
|
fveq2d |
⊢ ( [ ℎ ] ( ≃ph ‘ 𝐽 ) = 𝑧 → ( 𝐺 ‘ ( [ 𝑓 ] ( ≃ph ‘ 𝐽 ) ( +g ‘ 𝑃 ) [ ℎ ] ( ≃ph ‘ 𝐽 ) ) ) = ( 𝐺 ‘ ( [ 𝑓 ] ( ≃ph ‘ 𝐽 ) ( +g ‘ 𝑃 ) 𝑧 ) ) ) |
| 34 |
|
fveq2 |
⊢ ( [ ℎ ] ( ≃ph ‘ 𝐽 ) = 𝑧 → ( 𝐺 ‘ [ ℎ ] ( ≃ph ‘ 𝐽 ) ) = ( 𝐺 ‘ 𝑧 ) ) |
| 35 |
34
|
oveq2d |
⊢ ( [ ℎ ] ( ≃ph ‘ 𝐽 ) = 𝑧 → ( ( 𝐺 ‘ [ 𝑓 ] ( ≃ph ‘ 𝐽 ) ) ( +g ‘ 𝑄 ) ( 𝐺 ‘ [ ℎ ] ( ≃ph ‘ 𝐽 ) ) ) = ( ( 𝐺 ‘ [ 𝑓 ] ( ≃ph ‘ 𝐽 ) ) ( +g ‘ 𝑄 ) ( 𝐺 ‘ 𝑧 ) ) ) |
| 36 |
33 35
|
eqeq12d |
⊢ ( [ ℎ ] ( ≃ph ‘ 𝐽 ) = 𝑧 → ( ( 𝐺 ‘ ( [ 𝑓 ] ( ≃ph ‘ 𝐽 ) ( +g ‘ 𝑃 ) [ ℎ ] ( ≃ph ‘ 𝐽 ) ) ) = ( ( 𝐺 ‘ [ 𝑓 ] ( ≃ph ‘ 𝐽 ) ) ( +g ‘ 𝑄 ) ( 𝐺 ‘ [ ℎ ] ( ≃ph ‘ 𝐽 ) ) ) ↔ ( 𝐺 ‘ ( [ 𝑓 ] ( ≃ph ‘ 𝐽 ) ( +g ‘ 𝑃 ) 𝑧 ) ) = ( ( 𝐺 ‘ [ 𝑓 ] ( ≃ph ‘ 𝐽 ) ) ( +g ‘ 𝑄 ) ( 𝐺 ‘ 𝑧 ) ) ) ) |
| 37 |
1 5 7 22
|
pi1eluni |
⊢ ( 𝜑 → ( 𝑓 ∈ ∪ 𝑉 ↔ ( 𝑓 ∈ ( II Cn 𝐽 ) ∧ ( 𝑓 ‘ 0 ) = 𝐴 ∧ ( 𝑓 ‘ 1 ) = 𝐴 ) ) ) |
| 38 |
37
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝑉 ) → ( 𝑓 ∈ ( II Cn 𝐽 ) ∧ ( 𝑓 ‘ 0 ) = 𝐴 ∧ ( 𝑓 ‘ 1 ) = 𝐴 ) ) |
| 39 |
38
|
simp1d |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝑉 ) → 𝑓 ∈ ( II Cn 𝐽 ) ) |
| 40 |
39
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝑉 ) ∧ ℎ ∈ ∪ 𝑉 ) → 𝑓 ∈ ( II Cn 𝐽 ) ) |
| 41 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝑉 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 42 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝑉 ) → 𝐴 ∈ 𝑋 ) |
| 43 |
3
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝑉 ) → 𝑉 = ( Base ‘ 𝑃 ) ) |
| 44 |
1 41 42 43
|
pi1eluni |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝑉 ) → ( ℎ ∈ ∪ 𝑉 ↔ ( ℎ ∈ ( II Cn 𝐽 ) ∧ ( ℎ ‘ 0 ) = 𝐴 ∧ ( ℎ ‘ 1 ) = 𝐴 ) ) ) |
| 45 |
44
|
biimpa |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝑉 ) ∧ ℎ ∈ ∪ 𝑉 ) → ( ℎ ∈ ( II Cn 𝐽 ) ∧ ( ℎ ‘ 0 ) = 𝐴 ∧ ( ℎ ‘ 1 ) = 𝐴 ) ) |
| 46 |
45
|
simp1d |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝑉 ) ∧ ℎ ∈ ∪ 𝑉 ) → ℎ ∈ ( II Cn 𝐽 ) ) |
| 47 |
38
|
simp3d |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝑉 ) → ( 𝑓 ‘ 1 ) = 𝐴 ) |
| 48 |
47
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝑉 ) ∧ ℎ ∈ ∪ 𝑉 ) → ( 𝑓 ‘ 1 ) = 𝐴 ) |
| 49 |
45
|
simp2d |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝑉 ) ∧ ℎ ∈ ∪ 𝑉 ) → ( ℎ ‘ 0 ) = 𝐴 ) |
| 50 |
48 49
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝑉 ) ∧ ℎ ∈ ∪ 𝑉 ) → ( 𝑓 ‘ 1 ) = ( ℎ ‘ 0 ) ) |
| 51 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝑉 ) ∧ ℎ ∈ ∪ 𝑉 ) → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) |
| 52 |
40 46 50 51
|
copco |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝑉 ) ∧ ℎ ∈ ∪ 𝑉 ) → ( 𝐹 ∘ ( 𝑓 ( *𝑝 ‘ 𝐽 ) ℎ ) ) = ( ( 𝐹 ∘ 𝑓 ) ( *𝑝 ‘ 𝐾 ) ( 𝐹 ∘ ℎ ) ) ) |
| 53 |
52
|
eceq1d |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝑉 ) ∧ ℎ ∈ ∪ 𝑉 ) → [ ( 𝐹 ∘ ( 𝑓 ( *𝑝 ‘ 𝐽 ) ℎ ) ) ] ( ≃ph ‘ 𝐾 ) = [ ( ( 𝐹 ∘ 𝑓 ) ( *𝑝 ‘ 𝐾 ) ( 𝐹 ∘ ℎ ) ) ] ( ≃ph ‘ 𝐾 ) ) |
| 54 |
40 46 50
|
pcocn |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝑉 ) ∧ ℎ ∈ ∪ 𝑉 ) → ( 𝑓 ( *𝑝 ‘ 𝐽 ) ℎ ) ∈ ( II Cn 𝐽 ) ) |
| 55 |
40 46
|
pco0 |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝑉 ) ∧ ℎ ∈ ∪ 𝑉 ) → ( ( 𝑓 ( *𝑝 ‘ 𝐽 ) ℎ ) ‘ 0 ) = ( 𝑓 ‘ 0 ) ) |
| 56 |
38
|
simp2d |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝑉 ) → ( 𝑓 ‘ 0 ) = 𝐴 ) |
| 57 |
56
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝑉 ) ∧ ℎ ∈ ∪ 𝑉 ) → ( 𝑓 ‘ 0 ) = 𝐴 ) |
| 58 |
55 57
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝑉 ) ∧ ℎ ∈ ∪ 𝑉 ) → ( ( 𝑓 ( *𝑝 ‘ 𝐽 ) ℎ ) ‘ 0 ) = 𝐴 ) |
| 59 |
40 46
|
pco1 |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝑉 ) ∧ ℎ ∈ ∪ 𝑉 ) → ( ( 𝑓 ( *𝑝 ‘ 𝐽 ) ℎ ) ‘ 1 ) = ( ℎ ‘ 1 ) ) |
| 60 |
45
|
simp3d |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝑉 ) ∧ ℎ ∈ ∪ 𝑉 ) → ( ℎ ‘ 1 ) = 𝐴 ) |
| 61 |
59 60
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝑉 ) ∧ ℎ ∈ ∪ 𝑉 ) → ( ( 𝑓 ( *𝑝 ‘ 𝐽 ) ℎ ) ‘ 1 ) = 𝐴 ) |
| 62 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝑉 ) ∧ ℎ ∈ ∪ 𝑉 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 63 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝑉 ) ∧ ℎ ∈ ∪ 𝑉 ) → 𝐴 ∈ 𝑋 ) |
| 64 |
3
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝑉 ) ∧ ℎ ∈ ∪ 𝑉 ) → 𝑉 = ( Base ‘ 𝑃 ) ) |
| 65 |
1 62 63 64
|
pi1eluni |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝑉 ) ∧ ℎ ∈ ∪ 𝑉 ) → ( ( 𝑓 ( *𝑝 ‘ 𝐽 ) ℎ ) ∈ ∪ 𝑉 ↔ ( ( 𝑓 ( *𝑝 ‘ 𝐽 ) ℎ ) ∈ ( II Cn 𝐽 ) ∧ ( ( 𝑓 ( *𝑝 ‘ 𝐽 ) ℎ ) ‘ 0 ) = 𝐴 ∧ ( ( 𝑓 ( *𝑝 ‘ 𝐽 ) ℎ ) ‘ 1 ) = 𝐴 ) ) ) |
| 66 |
54 58 61 65
|
mpbir3and |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝑉 ) ∧ ℎ ∈ ∪ 𝑉 ) → ( 𝑓 ( *𝑝 ‘ 𝐽 ) ℎ ) ∈ ∪ 𝑉 ) |
| 67 |
1 2 3 4 5 6 7 8
|
pi1coval |
⊢ ( ( 𝜑 ∧ ( 𝑓 ( *𝑝 ‘ 𝐽 ) ℎ ) ∈ ∪ 𝑉 ) → ( 𝐺 ‘ [ ( 𝑓 ( *𝑝 ‘ 𝐽 ) ℎ ) ] ( ≃ph ‘ 𝐽 ) ) = [ ( 𝐹 ∘ ( 𝑓 ( *𝑝 ‘ 𝐽 ) ℎ ) ) ] ( ≃ph ‘ 𝐾 ) ) |
| 68 |
67
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝑉 ) ∧ ( 𝑓 ( *𝑝 ‘ 𝐽 ) ℎ ) ∈ ∪ 𝑉 ) → ( 𝐺 ‘ [ ( 𝑓 ( *𝑝 ‘ 𝐽 ) ℎ ) ] ( ≃ph ‘ 𝐽 ) ) = [ ( 𝐹 ∘ ( 𝑓 ( *𝑝 ‘ 𝐽 ) ℎ ) ) ] ( ≃ph ‘ 𝐾 ) ) |
| 69 |
66 68
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝑉 ) ∧ ℎ ∈ ∪ 𝑉 ) → ( 𝐺 ‘ [ ( 𝑓 ( *𝑝 ‘ 𝐽 ) ℎ ) ] ( ≃ph ‘ 𝐽 ) ) = [ ( 𝐹 ∘ ( 𝑓 ( *𝑝 ‘ 𝐽 ) ℎ ) ) ] ( ≃ph ‘ 𝐾 ) ) |
| 70 |
|
eqid |
⊢ ( Base ‘ 𝑄 ) = ( Base ‘ 𝑄 ) |
| 71 |
14
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝑉 ) ∧ ℎ ∈ ∪ 𝑉 ) → 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ) |
| 72 |
18
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝑉 ) ∧ ℎ ∈ ∪ 𝑉 ) → 𝐵 ∈ ∪ 𝐾 ) |
| 73 |
|
eqid |
⊢ ( +g ‘ 𝑄 ) = ( +g ‘ 𝑄 ) |
| 74 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝑉 ) → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) |
| 75 |
|
cnco |
⊢ ( ( 𝑓 ∈ ( II Cn 𝐽 ) ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → ( 𝐹 ∘ 𝑓 ) ∈ ( II Cn 𝐾 ) ) |
| 76 |
39 74 75
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝑉 ) → ( 𝐹 ∘ 𝑓 ) ∈ ( II Cn 𝐾 ) ) |
| 77 |
|
iitopon |
⊢ II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) |
| 78 |
|
cnf2 |
⊢ ( ( II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) ∧ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑓 ∈ ( II Cn 𝐽 ) ) → 𝑓 : ( 0 [,] 1 ) ⟶ 𝑋 ) |
| 79 |
77 41 39 78
|
mp3an2i |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝑉 ) → 𝑓 : ( 0 [,] 1 ) ⟶ 𝑋 ) |
| 80 |
|
0elunit |
⊢ 0 ∈ ( 0 [,] 1 ) |
| 81 |
|
fvco3 |
⊢ ( ( 𝑓 : ( 0 [,] 1 ) ⟶ 𝑋 ∧ 0 ∈ ( 0 [,] 1 ) ) → ( ( 𝐹 ∘ 𝑓 ) ‘ 0 ) = ( 𝐹 ‘ ( 𝑓 ‘ 0 ) ) ) |
| 82 |
79 80 81
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝑉 ) → ( ( 𝐹 ∘ 𝑓 ) ‘ 0 ) = ( 𝐹 ‘ ( 𝑓 ‘ 0 ) ) ) |
| 83 |
56
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝑉 ) → ( 𝐹 ‘ ( 𝑓 ‘ 0 ) ) = ( 𝐹 ‘ 𝐴 ) ) |
| 84 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝑉 ) → ( 𝐹 ‘ 𝐴 ) = 𝐵 ) |
| 85 |
82 83 84
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝑉 ) → ( ( 𝐹 ∘ 𝑓 ) ‘ 0 ) = 𝐵 ) |
| 86 |
|
1elunit |
⊢ 1 ∈ ( 0 [,] 1 ) |
| 87 |
|
fvco3 |
⊢ ( ( 𝑓 : ( 0 [,] 1 ) ⟶ 𝑋 ∧ 1 ∈ ( 0 [,] 1 ) ) → ( ( 𝐹 ∘ 𝑓 ) ‘ 1 ) = ( 𝐹 ‘ ( 𝑓 ‘ 1 ) ) ) |
| 88 |
79 86 87
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝑉 ) → ( ( 𝐹 ∘ 𝑓 ) ‘ 1 ) = ( 𝐹 ‘ ( 𝑓 ‘ 1 ) ) ) |
| 89 |
47
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝑉 ) → ( 𝐹 ‘ ( 𝑓 ‘ 1 ) ) = ( 𝐹 ‘ 𝐴 ) ) |
| 90 |
88 89 84
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝑉 ) → ( ( 𝐹 ∘ 𝑓 ) ‘ 1 ) = 𝐵 ) |
| 91 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝑉 ) → 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ) |
| 92 |
18
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝑉 ) → 𝐵 ∈ ∪ 𝐾 ) |
| 93 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝑉 ) → ( Base ‘ 𝑄 ) = ( Base ‘ 𝑄 ) ) |
| 94 |
2 91 92 93
|
pi1eluni |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝑉 ) → ( ( 𝐹 ∘ 𝑓 ) ∈ ∪ ( Base ‘ 𝑄 ) ↔ ( ( 𝐹 ∘ 𝑓 ) ∈ ( II Cn 𝐾 ) ∧ ( ( 𝐹 ∘ 𝑓 ) ‘ 0 ) = 𝐵 ∧ ( ( 𝐹 ∘ 𝑓 ) ‘ 1 ) = 𝐵 ) ) ) |
| 95 |
76 85 90 94
|
mpbir3and |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝑉 ) → ( 𝐹 ∘ 𝑓 ) ∈ ∪ ( Base ‘ 𝑄 ) ) |
| 96 |
95
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝑉 ) ∧ ℎ ∈ ∪ 𝑉 ) → ( 𝐹 ∘ 𝑓 ) ∈ ∪ ( Base ‘ 𝑄 ) ) |
| 97 |
|
cnco |
⊢ ( ( ℎ ∈ ( II Cn 𝐽 ) ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → ( 𝐹 ∘ ℎ ) ∈ ( II Cn 𝐾 ) ) |
| 98 |
46 51 97
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝑉 ) ∧ ℎ ∈ ∪ 𝑉 ) → ( 𝐹 ∘ ℎ ) ∈ ( II Cn 𝐾 ) ) |
| 99 |
|
cnf2 |
⊢ ( ( II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) ∧ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ℎ ∈ ( II Cn 𝐽 ) ) → ℎ : ( 0 [,] 1 ) ⟶ 𝑋 ) |
| 100 |
77 62 46 99
|
mp3an2i |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝑉 ) ∧ ℎ ∈ ∪ 𝑉 ) → ℎ : ( 0 [,] 1 ) ⟶ 𝑋 ) |
| 101 |
|
fvco3 |
⊢ ( ( ℎ : ( 0 [,] 1 ) ⟶ 𝑋 ∧ 0 ∈ ( 0 [,] 1 ) ) → ( ( 𝐹 ∘ ℎ ) ‘ 0 ) = ( 𝐹 ‘ ( ℎ ‘ 0 ) ) ) |
| 102 |
100 80 101
|
sylancl |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝑉 ) ∧ ℎ ∈ ∪ 𝑉 ) → ( ( 𝐹 ∘ ℎ ) ‘ 0 ) = ( 𝐹 ‘ ( ℎ ‘ 0 ) ) ) |
| 103 |
49
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝑉 ) ∧ ℎ ∈ ∪ 𝑉 ) → ( 𝐹 ‘ ( ℎ ‘ 0 ) ) = ( 𝐹 ‘ 𝐴 ) ) |
| 104 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝑉 ) ∧ ℎ ∈ ∪ 𝑉 ) → ( 𝐹 ‘ 𝐴 ) = 𝐵 ) |
| 105 |
102 103 104
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝑉 ) ∧ ℎ ∈ ∪ 𝑉 ) → ( ( 𝐹 ∘ ℎ ) ‘ 0 ) = 𝐵 ) |
| 106 |
|
fvco3 |
⊢ ( ( ℎ : ( 0 [,] 1 ) ⟶ 𝑋 ∧ 1 ∈ ( 0 [,] 1 ) ) → ( ( 𝐹 ∘ ℎ ) ‘ 1 ) = ( 𝐹 ‘ ( ℎ ‘ 1 ) ) ) |
| 107 |
100 86 106
|
sylancl |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝑉 ) ∧ ℎ ∈ ∪ 𝑉 ) → ( ( 𝐹 ∘ ℎ ) ‘ 1 ) = ( 𝐹 ‘ ( ℎ ‘ 1 ) ) ) |
| 108 |
60
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝑉 ) ∧ ℎ ∈ ∪ 𝑉 ) → ( 𝐹 ‘ ( ℎ ‘ 1 ) ) = ( 𝐹 ‘ 𝐴 ) ) |
| 109 |
107 108 104
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝑉 ) ∧ ℎ ∈ ∪ 𝑉 ) → ( ( 𝐹 ∘ ℎ ) ‘ 1 ) = 𝐵 ) |
| 110 |
|
eqidd |
⊢ ( 𝜑 → ( Base ‘ 𝑄 ) = ( Base ‘ 𝑄 ) ) |
| 111 |
2 14 18 110
|
pi1eluni |
⊢ ( 𝜑 → ( ( 𝐹 ∘ ℎ ) ∈ ∪ ( Base ‘ 𝑄 ) ↔ ( ( 𝐹 ∘ ℎ ) ∈ ( II Cn 𝐾 ) ∧ ( ( 𝐹 ∘ ℎ ) ‘ 0 ) = 𝐵 ∧ ( ( 𝐹 ∘ ℎ ) ‘ 1 ) = 𝐵 ) ) ) |
| 112 |
111
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝑉 ) ∧ ℎ ∈ ∪ 𝑉 ) → ( ( 𝐹 ∘ ℎ ) ∈ ∪ ( Base ‘ 𝑄 ) ↔ ( ( 𝐹 ∘ ℎ ) ∈ ( II Cn 𝐾 ) ∧ ( ( 𝐹 ∘ ℎ ) ‘ 0 ) = 𝐵 ∧ ( ( 𝐹 ∘ ℎ ) ‘ 1 ) = 𝐵 ) ) ) |
| 113 |
98 105 109 112
|
mpbir3and |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝑉 ) ∧ ℎ ∈ ∪ 𝑉 ) → ( 𝐹 ∘ ℎ ) ∈ ∪ ( Base ‘ 𝑄 ) ) |
| 114 |
2 70 71 72 73 96 113
|
pi1addval |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝑉 ) ∧ ℎ ∈ ∪ 𝑉 ) → ( [ ( 𝐹 ∘ 𝑓 ) ] ( ≃ph ‘ 𝐾 ) ( +g ‘ 𝑄 ) [ ( 𝐹 ∘ ℎ ) ] ( ≃ph ‘ 𝐾 ) ) = [ ( ( 𝐹 ∘ 𝑓 ) ( *𝑝 ‘ 𝐾 ) ( 𝐹 ∘ ℎ ) ) ] ( ≃ph ‘ 𝐾 ) ) |
| 115 |
53 69 114
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝑉 ) ∧ ℎ ∈ ∪ 𝑉 ) → ( 𝐺 ‘ [ ( 𝑓 ( *𝑝 ‘ 𝐽 ) ℎ ) ] ( ≃ph ‘ 𝐽 ) ) = ( [ ( 𝐹 ∘ 𝑓 ) ] ( ≃ph ‘ 𝐾 ) ( +g ‘ 𝑄 ) [ ( 𝐹 ∘ ℎ ) ] ( ≃ph ‘ 𝐾 ) ) ) |
| 116 |
|
eqid |
⊢ ( +g ‘ 𝑃 ) = ( +g ‘ 𝑃 ) |
| 117 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝑉 ) ∧ ℎ ∈ ∪ 𝑉 ) → 𝑓 ∈ ∪ 𝑉 ) |
| 118 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝑉 ) ∧ ℎ ∈ ∪ 𝑉 ) → ℎ ∈ ∪ 𝑉 ) |
| 119 |
1 3 62 63 116 117 118
|
pi1addval |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝑉 ) ∧ ℎ ∈ ∪ 𝑉 ) → ( [ 𝑓 ] ( ≃ph ‘ 𝐽 ) ( +g ‘ 𝑃 ) [ ℎ ] ( ≃ph ‘ 𝐽 ) ) = [ ( 𝑓 ( *𝑝 ‘ 𝐽 ) ℎ ) ] ( ≃ph ‘ 𝐽 ) ) |
| 120 |
119
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝑉 ) ∧ ℎ ∈ ∪ 𝑉 ) → ( 𝐺 ‘ ( [ 𝑓 ] ( ≃ph ‘ 𝐽 ) ( +g ‘ 𝑃 ) [ ℎ ] ( ≃ph ‘ 𝐽 ) ) ) = ( 𝐺 ‘ [ ( 𝑓 ( *𝑝 ‘ 𝐽 ) ℎ ) ] ( ≃ph ‘ 𝐽 ) ) ) |
| 121 |
1 2 3 4 5 6 7 8
|
pi1coval |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝑉 ) → ( 𝐺 ‘ [ 𝑓 ] ( ≃ph ‘ 𝐽 ) ) = [ ( 𝐹 ∘ 𝑓 ) ] ( ≃ph ‘ 𝐾 ) ) |
| 122 |
121
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝑉 ) ∧ ℎ ∈ ∪ 𝑉 ) → ( 𝐺 ‘ [ 𝑓 ] ( ≃ph ‘ 𝐽 ) ) = [ ( 𝐹 ∘ 𝑓 ) ] ( ≃ph ‘ 𝐾 ) ) |
| 123 |
1 2 3 4 5 6 7 8
|
pi1coval |
⊢ ( ( 𝜑 ∧ ℎ ∈ ∪ 𝑉 ) → ( 𝐺 ‘ [ ℎ ] ( ≃ph ‘ 𝐽 ) ) = [ ( 𝐹 ∘ ℎ ) ] ( ≃ph ‘ 𝐾 ) ) |
| 124 |
123
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝑉 ) ∧ ℎ ∈ ∪ 𝑉 ) → ( 𝐺 ‘ [ ℎ ] ( ≃ph ‘ 𝐽 ) ) = [ ( 𝐹 ∘ ℎ ) ] ( ≃ph ‘ 𝐾 ) ) |
| 125 |
122 124
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝑉 ) ∧ ℎ ∈ ∪ 𝑉 ) → ( ( 𝐺 ‘ [ 𝑓 ] ( ≃ph ‘ 𝐽 ) ) ( +g ‘ 𝑄 ) ( 𝐺 ‘ [ ℎ ] ( ≃ph ‘ 𝐽 ) ) ) = ( [ ( 𝐹 ∘ 𝑓 ) ] ( ≃ph ‘ 𝐾 ) ( +g ‘ 𝑄 ) [ ( 𝐹 ∘ ℎ ) ] ( ≃ph ‘ 𝐾 ) ) ) |
| 126 |
115 120 125
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝑉 ) ∧ ℎ ∈ ∪ 𝑉 ) → ( 𝐺 ‘ ( [ 𝑓 ] ( ≃ph ‘ 𝐽 ) ( +g ‘ 𝑃 ) [ ℎ ] ( ≃ph ‘ 𝐽 ) ) ) = ( ( 𝐺 ‘ [ 𝑓 ] ( ≃ph ‘ 𝐽 ) ) ( +g ‘ 𝑄 ) ( 𝐺 ‘ [ ℎ ] ( ≃ph ‘ 𝐽 ) ) ) ) |
| 127 |
26 36 126
|
ectocld |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝑉 ) ∧ 𝑧 ∈ ( ∪ 𝑉 / ( ≃ph ‘ 𝐽 ) ) ) → ( 𝐺 ‘ ( [ 𝑓 ] ( ≃ph ‘ 𝐽 ) ( +g ‘ 𝑃 ) 𝑧 ) ) = ( ( 𝐺 ‘ [ 𝑓 ] ( ≃ph ‘ 𝐽 ) ) ( +g ‘ 𝑄 ) ( 𝐺 ‘ 𝑧 ) ) ) |
| 128 |
127
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝑉 ) → ∀ 𝑧 ∈ ( ∪ 𝑉 / ( ≃ph ‘ 𝐽 ) ) ( 𝐺 ‘ ( [ 𝑓 ] ( ≃ph ‘ 𝐽 ) ( +g ‘ 𝑃 ) 𝑧 ) ) = ( ( 𝐺 ‘ [ 𝑓 ] ( ≃ph ‘ 𝐽 ) ) ( +g ‘ 𝑄 ) ( 𝐺 ‘ 𝑧 ) ) ) |
| 129 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝑉 ) → 𝑉 = ( ∪ 𝑉 / ( ≃ph ‘ 𝐽 ) ) ) |
| 130 |
128 129
|
raleqtrrdv |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝑉 ) → ∀ 𝑧 ∈ 𝑉 ( 𝐺 ‘ ( [ 𝑓 ] ( ≃ph ‘ 𝐽 ) ( +g ‘ 𝑃 ) 𝑧 ) ) = ( ( 𝐺 ‘ [ 𝑓 ] ( ≃ph ‘ 𝐽 ) ) ( +g ‘ 𝑄 ) ( 𝐺 ‘ 𝑧 ) ) ) |
| 131 |
26 31 130
|
ectocld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ∪ 𝑉 / ( ≃ph ‘ 𝐽 ) ) ) → ∀ 𝑧 ∈ 𝑉 ( 𝐺 ‘ ( 𝑦 ( +g ‘ 𝑃 ) 𝑧 ) ) = ( ( 𝐺 ‘ 𝑦 ) ( +g ‘ 𝑄 ) ( 𝐺 ‘ 𝑧 ) ) ) |
| 132 |
25 131
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑉 ) → ∀ 𝑧 ∈ 𝑉 ( 𝐺 ‘ ( 𝑦 ( +g ‘ 𝑃 ) 𝑧 ) ) = ( ( 𝐺 ‘ 𝑦 ) ( +g ‘ 𝑄 ) ( 𝐺 ‘ 𝑧 ) ) ) |
| 133 |
132
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝑉 ∀ 𝑧 ∈ 𝑉 ( 𝐺 ‘ ( 𝑦 ( +g ‘ 𝑃 ) 𝑧 ) ) = ( ( 𝐺 ‘ 𝑦 ) ( +g ‘ 𝑄 ) ( 𝐺 ‘ 𝑧 ) ) ) |
| 134 |
21 133
|
jca |
⊢ ( 𝜑 → ( 𝐺 : 𝑉 ⟶ ( Base ‘ 𝑄 ) ∧ ∀ 𝑦 ∈ 𝑉 ∀ 𝑧 ∈ 𝑉 ( 𝐺 ‘ ( 𝑦 ( +g ‘ 𝑃 ) 𝑧 ) ) = ( ( 𝐺 ‘ 𝑦 ) ( +g ‘ 𝑄 ) ( 𝐺 ‘ 𝑧 ) ) ) ) |
| 135 |
3 70 116 73
|
isghm |
⊢ ( 𝐺 ∈ ( 𝑃 GrpHom 𝑄 ) ↔ ( ( 𝑃 ∈ Grp ∧ 𝑄 ∈ Grp ) ∧ ( 𝐺 : 𝑉 ⟶ ( Base ‘ 𝑄 ) ∧ ∀ 𝑦 ∈ 𝑉 ∀ 𝑧 ∈ 𝑉 ( 𝐺 ‘ ( 𝑦 ( +g ‘ 𝑃 ) 𝑧 ) ) = ( ( 𝐺 ‘ 𝑦 ) ( +g ‘ 𝑄 ) ( 𝐺 ‘ 𝑧 ) ) ) ) ) |
| 136 |
10 20 134 135
|
syl21anbrc |
⊢ ( 𝜑 → 𝐺 ∈ ( 𝑃 GrpHom 𝑄 ) ) |