Metamath Proof Explorer


Theorem pi1coghm

Description: The mapping G between fundamental groups is a group homomorphism. (Contributed by Mario Carneiro, 10-Aug-2015) (Revised by Mario Carneiro, 23-Dec-2016)

Ref Expression
Hypotheses pi1co.p 𝑃 = ( 𝐽 π1 𝐴 )
pi1co.q 𝑄 = ( 𝐾 π1 𝐵 )
pi1co.v 𝑉 = ( Base ‘ 𝑃 )
pi1co.g 𝐺 = ran ( 𝑔 𝑉 ↦ ⟨ [ 𝑔 ] ( ≃ph𝐽 ) , [ ( 𝐹𝑔 ) ] ( ≃ph𝐾 ) ⟩ )
pi1co.j ( 𝜑𝐽 ∈ ( TopOn ‘ 𝑋 ) )
pi1co.f ( 𝜑𝐹 ∈ ( 𝐽 Cn 𝐾 ) )
pi1co.a ( 𝜑𝐴𝑋 )
pi1co.b ( 𝜑 → ( 𝐹𝐴 ) = 𝐵 )
Assertion pi1coghm ( 𝜑𝐺 ∈ ( 𝑃 GrpHom 𝑄 ) )

Proof

Step Hyp Ref Expression
1 pi1co.p 𝑃 = ( 𝐽 π1 𝐴 )
2 pi1co.q 𝑄 = ( 𝐾 π1 𝐵 )
3 pi1co.v 𝑉 = ( Base ‘ 𝑃 )
4 pi1co.g 𝐺 = ran ( 𝑔 𝑉 ↦ ⟨ [ 𝑔 ] ( ≃ph𝐽 ) , [ ( 𝐹𝑔 ) ] ( ≃ph𝐾 ) ⟩ )
5 pi1co.j ( 𝜑𝐽 ∈ ( TopOn ‘ 𝑋 ) )
6 pi1co.f ( 𝜑𝐹 ∈ ( 𝐽 Cn 𝐾 ) )
7 pi1co.a ( 𝜑𝐴𝑋 )
8 pi1co.b ( 𝜑 → ( 𝐹𝐴 ) = 𝐵 )
9 1 pi1grp ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴𝑋 ) → 𝑃 ∈ Grp )
10 5 7 9 syl2anc ( 𝜑𝑃 ∈ Grp )
11 cntop2 ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐾 ∈ Top )
12 6 11 syl ( 𝜑𝐾 ∈ Top )
13 toptopon2 ( 𝐾 ∈ Top ↔ 𝐾 ∈ ( TopOn ‘ 𝐾 ) )
14 12 13 sylib ( 𝜑𝐾 ∈ ( TopOn ‘ 𝐾 ) )
15 cnf2 ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝐾 ) ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → 𝐹 : 𝑋 𝐾 )
16 5 14 6 15 syl3anc ( 𝜑𝐹 : 𝑋 𝐾 )
17 16 7 ffvelrnd ( 𝜑 → ( 𝐹𝐴 ) ∈ 𝐾 )
18 8 17 eqeltrrd ( 𝜑𝐵 𝐾 )
19 2 pi1grp ( ( 𝐾 ∈ ( TopOn ‘ 𝐾 ) ∧ 𝐵 𝐾 ) → 𝑄 ∈ Grp )
20 14 18 19 syl2anc ( 𝜑𝑄 ∈ Grp )
21 1 2 3 4 5 6 7 8 pi1cof ( 𝜑𝐺 : 𝑉 ⟶ ( Base ‘ 𝑄 ) )
22 3 a1i ( 𝜑𝑉 = ( Base ‘ 𝑃 ) )
23 1 5 7 22 pi1bas2 ( 𝜑𝑉 = ( 𝑉 / ( ≃ph𝐽 ) ) )
24 23 eleq2d ( 𝜑 → ( 𝑦𝑉𝑦 ∈ ( 𝑉 / ( ≃ph𝐽 ) ) ) )
25 24 biimpa ( ( 𝜑𝑦𝑉 ) → 𝑦 ∈ ( 𝑉 / ( ≃ph𝐽 ) ) )
26 eqid ( 𝑉 / ( ≃ph𝐽 ) ) = ( 𝑉 / ( ≃ph𝐽 ) )
27 fvoveq1 ( [ 𝑓 ] ( ≃ph𝐽 ) = 𝑦 → ( 𝐺 ‘ ( [ 𝑓 ] ( ≃ph𝐽 ) ( +g𝑃 ) 𝑧 ) ) = ( 𝐺 ‘ ( 𝑦 ( +g𝑃 ) 𝑧 ) ) )
28 fveq2 ( [ 𝑓 ] ( ≃ph𝐽 ) = 𝑦 → ( 𝐺 ‘ [ 𝑓 ] ( ≃ph𝐽 ) ) = ( 𝐺𝑦 ) )
29 28 oveq1d ( [ 𝑓 ] ( ≃ph𝐽 ) = 𝑦 → ( ( 𝐺 ‘ [ 𝑓 ] ( ≃ph𝐽 ) ) ( +g𝑄 ) ( 𝐺𝑧 ) ) = ( ( 𝐺𝑦 ) ( +g𝑄 ) ( 𝐺𝑧 ) ) )
30 27 29 eqeq12d ( [ 𝑓 ] ( ≃ph𝐽 ) = 𝑦 → ( ( 𝐺 ‘ ( [ 𝑓 ] ( ≃ph𝐽 ) ( +g𝑃 ) 𝑧 ) ) = ( ( 𝐺 ‘ [ 𝑓 ] ( ≃ph𝐽 ) ) ( +g𝑄 ) ( 𝐺𝑧 ) ) ↔ ( 𝐺 ‘ ( 𝑦 ( +g𝑃 ) 𝑧 ) ) = ( ( 𝐺𝑦 ) ( +g𝑄 ) ( 𝐺𝑧 ) ) ) )
31 30 ralbidv ( [ 𝑓 ] ( ≃ph𝐽 ) = 𝑦 → ( ∀ 𝑧𝑉 ( 𝐺 ‘ ( [ 𝑓 ] ( ≃ph𝐽 ) ( +g𝑃 ) 𝑧 ) ) = ( ( 𝐺 ‘ [ 𝑓 ] ( ≃ph𝐽 ) ) ( +g𝑄 ) ( 𝐺𝑧 ) ) ↔ ∀ 𝑧𝑉 ( 𝐺 ‘ ( 𝑦 ( +g𝑃 ) 𝑧 ) ) = ( ( 𝐺𝑦 ) ( +g𝑄 ) ( 𝐺𝑧 ) ) ) )
32 oveq2 ( [ ] ( ≃ph𝐽 ) = 𝑧 → ( [ 𝑓 ] ( ≃ph𝐽 ) ( +g𝑃 ) [ ] ( ≃ph𝐽 ) ) = ( [ 𝑓 ] ( ≃ph𝐽 ) ( +g𝑃 ) 𝑧 ) )
33 32 fveq2d ( [ ] ( ≃ph𝐽 ) = 𝑧 → ( 𝐺 ‘ ( [ 𝑓 ] ( ≃ph𝐽 ) ( +g𝑃 ) [ ] ( ≃ph𝐽 ) ) ) = ( 𝐺 ‘ ( [ 𝑓 ] ( ≃ph𝐽 ) ( +g𝑃 ) 𝑧 ) ) )
34 fveq2 ( [ ] ( ≃ph𝐽 ) = 𝑧 → ( 𝐺 ‘ [ ] ( ≃ph𝐽 ) ) = ( 𝐺𝑧 ) )
35 34 oveq2d ( [ ] ( ≃ph𝐽 ) = 𝑧 → ( ( 𝐺 ‘ [ 𝑓 ] ( ≃ph𝐽 ) ) ( +g𝑄 ) ( 𝐺 ‘ [ ] ( ≃ph𝐽 ) ) ) = ( ( 𝐺 ‘ [ 𝑓 ] ( ≃ph𝐽 ) ) ( +g𝑄 ) ( 𝐺𝑧 ) ) )
36 33 35 eqeq12d ( [ ] ( ≃ph𝐽 ) = 𝑧 → ( ( 𝐺 ‘ ( [ 𝑓 ] ( ≃ph𝐽 ) ( +g𝑃 ) [ ] ( ≃ph𝐽 ) ) ) = ( ( 𝐺 ‘ [ 𝑓 ] ( ≃ph𝐽 ) ) ( +g𝑄 ) ( 𝐺 ‘ [ ] ( ≃ph𝐽 ) ) ) ↔ ( 𝐺 ‘ ( [ 𝑓 ] ( ≃ph𝐽 ) ( +g𝑃 ) 𝑧 ) ) = ( ( 𝐺 ‘ [ 𝑓 ] ( ≃ph𝐽 ) ) ( +g𝑄 ) ( 𝐺𝑧 ) ) ) )
37 1 5 7 22 pi1eluni ( 𝜑 → ( 𝑓 𝑉 ↔ ( 𝑓 ∈ ( II Cn 𝐽 ) ∧ ( 𝑓 ‘ 0 ) = 𝐴 ∧ ( 𝑓 ‘ 1 ) = 𝐴 ) ) )
38 37 biimpa ( ( 𝜑𝑓 𝑉 ) → ( 𝑓 ∈ ( II Cn 𝐽 ) ∧ ( 𝑓 ‘ 0 ) = 𝐴 ∧ ( 𝑓 ‘ 1 ) = 𝐴 ) )
39 38 simp1d ( ( 𝜑𝑓 𝑉 ) → 𝑓 ∈ ( II Cn 𝐽 ) )
40 39 adantr ( ( ( 𝜑𝑓 𝑉 ) ∧ 𝑉 ) → 𝑓 ∈ ( II Cn 𝐽 ) )
41 5 adantr ( ( 𝜑𝑓 𝑉 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) )
42 7 adantr ( ( 𝜑𝑓 𝑉 ) → 𝐴𝑋 )
43 3 a1i ( ( 𝜑𝑓 𝑉 ) → 𝑉 = ( Base ‘ 𝑃 ) )
44 1 41 42 43 pi1eluni ( ( 𝜑𝑓 𝑉 ) → ( 𝑉 ↔ ( ∈ ( II Cn 𝐽 ) ∧ ( ‘ 0 ) = 𝐴 ∧ ( ‘ 1 ) = 𝐴 ) ) )
45 44 biimpa ( ( ( 𝜑𝑓 𝑉 ) ∧ 𝑉 ) → ( ∈ ( II Cn 𝐽 ) ∧ ( ‘ 0 ) = 𝐴 ∧ ( ‘ 1 ) = 𝐴 ) )
46 45 simp1d ( ( ( 𝜑𝑓 𝑉 ) ∧ 𝑉 ) → ∈ ( II Cn 𝐽 ) )
47 38 simp3d ( ( 𝜑𝑓 𝑉 ) → ( 𝑓 ‘ 1 ) = 𝐴 )
48 47 adantr ( ( ( 𝜑𝑓 𝑉 ) ∧ 𝑉 ) → ( 𝑓 ‘ 1 ) = 𝐴 )
49 45 simp2d ( ( ( 𝜑𝑓 𝑉 ) ∧ 𝑉 ) → ( ‘ 0 ) = 𝐴 )
50 48 49 eqtr4d ( ( ( 𝜑𝑓 𝑉 ) ∧ 𝑉 ) → ( 𝑓 ‘ 1 ) = ( ‘ 0 ) )
51 6 ad2antrr ( ( ( 𝜑𝑓 𝑉 ) ∧ 𝑉 ) → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) )
52 40 46 50 51 copco ( ( ( 𝜑𝑓 𝑉 ) ∧ 𝑉 ) → ( 𝐹 ∘ ( 𝑓 ( *𝑝𝐽 ) ) ) = ( ( 𝐹𝑓 ) ( *𝑝𝐾 ) ( 𝐹 ) ) )
53 52 eceq1d ( ( ( 𝜑𝑓 𝑉 ) ∧ 𝑉 ) → [ ( 𝐹 ∘ ( 𝑓 ( *𝑝𝐽 ) ) ) ] ( ≃ph𝐾 ) = [ ( ( 𝐹𝑓 ) ( *𝑝𝐾 ) ( 𝐹 ) ) ] ( ≃ph𝐾 ) )
54 40 46 50 pcocn ( ( ( 𝜑𝑓 𝑉 ) ∧ 𝑉 ) → ( 𝑓 ( *𝑝𝐽 ) ) ∈ ( II Cn 𝐽 ) )
55 40 46 pco0 ( ( ( 𝜑𝑓 𝑉 ) ∧ 𝑉 ) → ( ( 𝑓 ( *𝑝𝐽 ) ) ‘ 0 ) = ( 𝑓 ‘ 0 ) )
56 38 simp2d ( ( 𝜑𝑓 𝑉 ) → ( 𝑓 ‘ 0 ) = 𝐴 )
57 56 adantr ( ( ( 𝜑𝑓 𝑉 ) ∧ 𝑉 ) → ( 𝑓 ‘ 0 ) = 𝐴 )
58 55 57 eqtrd ( ( ( 𝜑𝑓 𝑉 ) ∧ 𝑉 ) → ( ( 𝑓 ( *𝑝𝐽 ) ) ‘ 0 ) = 𝐴 )
59 40 46 pco1 ( ( ( 𝜑𝑓 𝑉 ) ∧ 𝑉 ) → ( ( 𝑓 ( *𝑝𝐽 ) ) ‘ 1 ) = ( ‘ 1 ) )
60 45 simp3d ( ( ( 𝜑𝑓 𝑉 ) ∧ 𝑉 ) → ( ‘ 1 ) = 𝐴 )
61 59 60 eqtrd ( ( ( 𝜑𝑓 𝑉 ) ∧ 𝑉 ) → ( ( 𝑓 ( *𝑝𝐽 ) ) ‘ 1 ) = 𝐴 )
62 5 ad2antrr ( ( ( 𝜑𝑓 𝑉 ) ∧ 𝑉 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) )
63 7 ad2antrr ( ( ( 𝜑𝑓 𝑉 ) ∧ 𝑉 ) → 𝐴𝑋 )
64 3 a1i ( ( ( 𝜑𝑓 𝑉 ) ∧ 𝑉 ) → 𝑉 = ( Base ‘ 𝑃 ) )
65 1 62 63 64 pi1eluni ( ( ( 𝜑𝑓 𝑉 ) ∧ 𝑉 ) → ( ( 𝑓 ( *𝑝𝐽 ) ) ∈ 𝑉 ↔ ( ( 𝑓 ( *𝑝𝐽 ) ) ∈ ( II Cn 𝐽 ) ∧ ( ( 𝑓 ( *𝑝𝐽 ) ) ‘ 0 ) = 𝐴 ∧ ( ( 𝑓 ( *𝑝𝐽 ) ) ‘ 1 ) = 𝐴 ) ) )
66 54 58 61 65 mpbir3and ( ( ( 𝜑𝑓 𝑉 ) ∧ 𝑉 ) → ( 𝑓 ( *𝑝𝐽 ) ) ∈ 𝑉 )
67 1 2 3 4 5 6 7 8 pi1coval ( ( 𝜑 ∧ ( 𝑓 ( *𝑝𝐽 ) ) ∈ 𝑉 ) → ( 𝐺 ‘ [ ( 𝑓 ( *𝑝𝐽 ) ) ] ( ≃ph𝐽 ) ) = [ ( 𝐹 ∘ ( 𝑓 ( *𝑝𝐽 ) ) ) ] ( ≃ph𝐾 ) )
68 67 adantlr ( ( ( 𝜑𝑓 𝑉 ) ∧ ( 𝑓 ( *𝑝𝐽 ) ) ∈ 𝑉 ) → ( 𝐺 ‘ [ ( 𝑓 ( *𝑝𝐽 ) ) ] ( ≃ph𝐽 ) ) = [ ( 𝐹 ∘ ( 𝑓 ( *𝑝𝐽 ) ) ) ] ( ≃ph𝐾 ) )
69 66 68 syldan ( ( ( 𝜑𝑓 𝑉 ) ∧ 𝑉 ) → ( 𝐺 ‘ [ ( 𝑓 ( *𝑝𝐽 ) ) ] ( ≃ph𝐽 ) ) = [ ( 𝐹 ∘ ( 𝑓 ( *𝑝𝐽 ) ) ) ] ( ≃ph𝐾 ) )
70 eqid ( Base ‘ 𝑄 ) = ( Base ‘ 𝑄 )
71 14 ad2antrr ( ( ( 𝜑𝑓 𝑉 ) ∧ 𝑉 ) → 𝐾 ∈ ( TopOn ‘ 𝐾 ) )
72 18 ad2antrr ( ( ( 𝜑𝑓 𝑉 ) ∧ 𝑉 ) → 𝐵 𝐾 )
73 eqid ( +g𝑄 ) = ( +g𝑄 )
74 6 adantr ( ( 𝜑𝑓 𝑉 ) → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) )
75 cnco ( ( 𝑓 ∈ ( II Cn 𝐽 ) ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → ( 𝐹𝑓 ) ∈ ( II Cn 𝐾 ) )
76 39 74 75 syl2anc ( ( 𝜑𝑓 𝑉 ) → ( 𝐹𝑓 ) ∈ ( II Cn 𝐾 ) )
77 iitopon II ∈ ( TopOn ‘ ( 0 [,] 1 ) )
78 cnf2 ( ( II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) ∧ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑓 ∈ ( II Cn 𝐽 ) ) → 𝑓 : ( 0 [,] 1 ) ⟶ 𝑋 )
79 77 41 39 78 mp3an2i ( ( 𝜑𝑓 𝑉 ) → 𝑓 : ( 0 [,] 1 ) ⟶ 𝑋 )
80 0elunit 0 ∈ ( 0 [,] 1 )
81 fvco3 ( ( 𝑓 : ( 0 [,] 1 ) ⟶ 𝑋 ∧ 0 ∈ ( 0 [,] 1 ) ) → ( ( 𝐹𝑓 ) ‘ 0 ) = ( 𝐹 ‘ ( 𝑓 ‘ 0 ) ) )
82 79 80 81 sylancl ( ( 𝜑𝑓 𝑉 ) → ( ( 𝐹𝑓 ) ‘ 0 ) = ( 𝐹 ‘ ( 𝑓 ‘ 0 ) ) )
83 56 fveq2d ( ( 𝜑𝑓 𝑉 ) → ( 𝐹 ‘ ( 𝑓 ‘ 0 ) ) = ( 𝐹𝐴 ) )
84 8 adantr ( ( 𝜑𝑓 𝑉 ) → ( 𝐹𝐴 ) = 𝐵 )
85 82 83 84 3eqtrd ( ( 𝜑𝑓 𝑉 ) → ( ( 𝐹𝑓 ) ‘ 0 ) = 𝐵 )
86 1elunit 1 ∈ ( 0 [,] 1 )
87 fvco3 ( ( 𝑓 : ( 0 [,] 1 ) ⟶ 𝑋 ∧ 1 ∈ ( 0 [,] 1 ) ) → ( ( 𝐹𝑓 ) ‘ 1 ) = ( 𝐹 ‘ ( 𝑓 ‘ 1 ) ) )
88 79 86 87 sylancl ( ( 𝜑𝑓 𝑉 ) → ( ( 𝐹𝑓 ) ‘ 1 ) = ( 𝐹 ‘ ( 𝑓 ‘ 1 ) ) )
89 47 fveq2d ( ( 𝜑𝑓 𝑉 ) → ( 𝐹 ‘ ( 𝑓 ‘ 1 ) ) = ( 𝐹𝐴 ) )
90 88 89 84 3eqtrd ( ( 𝜑𝑓 𝑉 ) → ( ( 𝐹𝑓 ) ‘ 1 ) = 𝐵 )
91 14 adantr ( ( 𝜑𝑓 𝑉 ) → 𝐾 ∈ ( TopOn ‘ 𝐾 ) )
92 18 adantr ( ( 𝜑𝑓 𝑉 ) → 𝐵 𝐾 )
93 eqidd ( ( 𝜑𝑓 𝑉 ) → ( Base ‘ 𝑄 ) = ( Base ‘ 𝑄 ) )
94 2 91 92 93 pi1eluni ( ( 𝜑𝑓 𝑉 ) → ( ( 𝐹𝑓 ) ∈ ( Base ‘ 𝑄 ) ↔ ( ( 𝐹𝑓 ) ∈ ( II Cn 𝐾 ) ∧ ( ( 𝐹𝑓 ) ‘ 0 ) = 𝐵 ∧ ( ( 𝐹𝑓 ) ‘ 1 ) = 𝐵 ) ) )
95 76 85 90 94 mpbir3and ( ( 𝜑𝑓 𝑉 ) → ( 𝐹𝑓 ) ∈ ( Base ‘ 𝑄 ) )
96 95 adantr ( ( ( 𝜑𝑓 𝑉 ) ∧ 𝑉 ) → ( 𝐹𝑓 ) ∈ ( Base ‘ 𝑄 ) )
97 cnco ( ( ∈ ( II Cn 𝐽 ) ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → ( 𝐹 ) ∈ ( II Cn 𝐾 ) )
98 46 51 97 syl2anc ( ( ( 𝜑𝑓 𝑉 ) ∧ 𝑉 ) → ( 𝐹 ) ∈ ( II Cn 𝐾 ) )
99 cnf2 ( ( II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) ∧ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ∈ ( II Cn 𝐽 ) ) → : ( 0 [,] 1 ) ⟶ 𝑋 )
100 77 62 46 99 mp3an2i ( ( ( 𝜑𝑓 𝑉 ) ∧ 𝑉 ) → : ( 0 [,] 1 ) ⟶ 𝑋 )
101 fvco3 ( ( : ( 0 [,] 1 ) ⟶ 𝑋 ∧ 0 ∈ ( 0 [,] 1 ) ) → ( ( 𝐹 ) ‘ 0 ) = ( 𝐹 ‘ ( ‘ 0 ) ) )
102 100 80 101 sylancl ( ( ( 𝜑𝑓 𝑉 ) ∧ 𝑉 ) → ( ( 𝐹 ) ‘ 0 ) = ( 𝐹 ‘ ( ‘ 0 ) ) )
103 49 fveq2d ( ( ( 𝜑𝑓 𝑉 ) ∧ 𝑉 ) → ( 𝐹 ‘ ( ‘ 0 ) ) = ( 𝐹𝐴 ) )
104 8 ad2antrr ( ( ( 𝜑𝑓 𝑉 ) ∧ 𝑉 ) → ( 𝐹𝐴 ) = 𝐵 )
105 102 103 104 3eqtrd ( ( ( 𝜑𝑓 𝑉 ) ∧ 𝑉 ) → ( ( 𝐹 ) ‘ 0 ) = 𝐵 )
106 fvco3 ( ( : ( 0 [,] 1 ) ⟶ 𝑋 ∧ 1 ∈ ( 0 [,] 1 ) ) → ( ( 𝐹 ) ‘ 1 ) = ( 𝐹 ‘ ( ‘ 1 ) ) )
107 100 86 106 sylancl ( ( ( 𝜑𝑓 𝑉 ) ∧ 𝑉 ) → ( ( 𝐹 ) ‘ 1 ) = ( 𝐹 ‘ ( ‘ 1 ) ) )
108 60 fveq2d ( ( ( 𝜑𝑓 𝑉 ) ∧ 𝑉 ) → ( 𝐹 ‘ ( ‘ 1 ) ) = ( 𝐹𝐴 ) )
109 107 108 104 3eqtrd ( ( ( 𝜑𝑓 𝑉 ) ∧ 𝑉 ) → ( ( 𝐹 ) ‘ 1 ) = 𝐵 )
110 eqidd ( 𝜑 → ( Base ‘ 𝑄 ) = ( Base ‘ 𝑄 ) )
111 2 14 18 110 pi1eluni ( 𝜑 → ( ( 𝐹 ) ∈ ( Base ‘ 𝑄 ) ↔ ( ( 𝐹 ) ∈ ( II Cn 𝐾 ) ∧ ( ( 𝐹 ) ‘ 0 ) = 𝐵 ∧ ( ( 𝐹 ) ‘ 1 ) = 𝐵 ) ) )
112 111 ad2antrr ( ( ( 𝜑𝑓 𝑉 ) ∧ 𝑉 ) → ( ( 𝐹 ) ∈ ( Base ‘ 𝑄 ) ↔ ( ( 𝐹 ) ∈ ( II Cn 𝐾 ) ∧ ( ( 𝐹 ) ‘ 0 ) = 𝐵 ∧ ( ( 𝐹 ) ‘ 1 ) = 𝐵 ) ) )
113 98 105 109 112 mpbir3and ( ( ( 𝜑𝑓 𝑉 ) ∧ 𝑉 ) → ( 𝐹 ) ∈ ( Base ‘ 𝑄 ) )
114 2 70 71 72 73 96 113 pi1addval ( ( ( 𝜑𝑓 𝑉 ) ∧ 𝑉 ) → ( [ ( 𝐹𝑓 ) ] ( ≃ph𝐾 ) ( +g𝑄 ) [ ( 𝐹 ) ] ( ≃ph𝐾 ) ) = [ ( ( 𝐹𝑓 ) ( *𝑝𝐾 ) ( 𝐹 ) ) ] ( ≃ph𝐾 ) )
115 53 69 114 3eqtr4d ( ( ( 𝜑𝑓 𝑉 ) ∧ 𝑉 ) → ( 𝐺 ‘ [ ( 𝑓 ( *𝑝𝐽 ) ) ] ( ≃ph𝐽 ) ) = ( [ ( 𝐹𝑓 ) ] ( ≃ph𝐾 ) ( +g𝑄 ) [ ( 𝐹 ) ] ( ≃ph𝐾 ) ) )
116 eqid ( +g𝑃 ) = ( +g𝑃 )
117 simplr ( ( ( 𝜑𝑓 𝑉 ) ∧ 𝑉 ) → 𝑓 𝑉 )
118 simpr ( ( ( 𝜑𝑓 𝑉 ) ∧ 𝑉 ) → 𝑉 )
119 1 3 62 63 116 117 118 pi1addval ( ( ( 𝜑𝑓 𝑉 ) ∧ 𝑉 ) → ( [ 𝑓 ] ( ≃ph𝐽 ) ( +g𝑃 ) [ ] ( ≃ph𝐽 ) ) = [ ( 𝑓 ( *𝑝𝐽 ) ) ] ( ≃ph𝐽 ) )
120 119 fveq2d ( ( ( 𝜑𝑓 𝑉 ) ∧ 𝑉 ) → ( 𝐺 ‘ ( [ 𝑓 ] ( ≃ph𝐽 ) ( +g𝑃 ) [ ] ( ≃ph𝐽 ) ) ) = ( 𝐺 ‘ [ ( 𝑓 ( *𝑝𝐽 ) ) ] ( ≃ph𝐽 ) ) )
121 1 2 3 4 5 6 7 8 pi1coval ( ( 𝜑𝑓 𝑉 ) → ( 𝐺 ‘ [ 𝑓 ] ( ≃ph𝐽 ) ) = [ ( 𝐹𝑓 ) ] ( ≃ph𝐾 ) )
122 121 adantr ( ( ( 𝜑𝑓 𝑉 ) ∧ 𝑉 ) → ( 𝐺 ‘ [ 𝑓 ] ( ≃ph𝐽 ) ) = [ ( 𝐹𝑓 ) ] ( ≃ph𝐾 ) )
123 1 2 3 4 5 6 7 8 pi1coval ( ( 𝜑 𝑉 ) → ( 𝐺 ‘ [ ] ( ≃ph𝐽 ) ) = [ ( 𝐹 ) ] ( ≃ph𝐾 ) )
124 123 adantlr ( ( ( 𝜑𝑓 𝑉 ) ∧ 𝑉 ) → ( 𝐺 ‘ [ ] ( ≃ph𝐽 ) ) = [ ( 𝐹 ) ] ( ≃ph𝐾 ) )
125 122 124 oveq12d ( ( ( 𝜑𝑓 𝑉 ) ∧ 𝑉 ) → ( ( 𝐺 ‘ [ 𝑓 ] ( ≃ph𝐽 ) ) ( +g𝑄 ) ( 𝐺 ‘ [ ] ( ≃ph𝐽 ) ) ) = ( [ ( 𝐹𝑓 ) ] ( ≃ph𝐾 ) ( +g𝑄 ) [ ( 𝐹 ) ] ( ≃ph𝐾 ) ) )
126 115 120 125 3eqtr4d ( ( ( 𝜑𝑓 𝑉 ) ∧ 𝑉 ) → ( 𝐺 ‘ ( [ 𝑓 ] ( ≃ph𝐽 ) ( +g𝑃 ) [ ] ( ≃ph𝐽 ) ) ) = ( ( 𝐺 ‘ [ 𝑓 ] ( ≃ph𝐽 ) ) ( +g𝑄 ) ( 𝐺 ‘ [ ] ( ≃ph𝐽 ) ) ) )
127 26 36 126 ectocld ( ( ( 𝜑𝑓 𝑉 ) ∧ 𝑧 ∈ ( 𝑉 / ( ≃ph𝐽 ) ) ) → ( 𝐺 ‘ ( [ 𝑓 ] ( ≃ph𝐽 ) ( +g𝑃 ) 𝑧 ) ) = ( ( 𝐺 ‘ [ 𝑓 ] ( ≃ph𝐽 ) ) ( +g𝑄 ) ( 𝐺𝑧 ) ) )
128 127 ralrimiva ( ( 𝜑𝑓 𝑉 ) → ∀ 𝑧 ∈ ( 𝑉 / ( ≃ph𝐽 ) ) ( 𝐺 ‘ ( [ 𝑓 ] ( ≃ph𝐽 ) ( +g𝑃 ) 𝑧 ) ) = ( ( 𝐺 ‘ [ 𝑓 ] ( ≃ph𝐽 ) ) ( +g𝑄 ) ( 𝐺𝑧 ) ) )
129 23 adantr ( ( 𝜑𝑓 𝑉 ) → 𝑉 = ( 𝑉 / ( ≃ph𝐽 ) ) )
130 129 raleqdv ( ( 𝜑𝑓 𝑉 ) → ( ∀ 𝑧𝑉 ( 𝐺 ‘ ( [ 𝑓 ] ( ≃ph𝐽 ) ( +g𝑃 ) 𝑧 ) ) = ( ( 𝐺 ‘ [ 𝑓 ] ( ≃ph𝐽 ) ) ( +g𝑄 ) ( 𝐺𝑧 ) ) ↔ ∀ 𝑧 ∈ ( 𝑉 / ( ≃ph𝐽 ) ) ( 𝐺 ‘ ( [ 𝑓 ] ( ≃ph𝐽 ) ( +g𝑃 ) 𝑧 ) ) = ( ( 𝐺 ‘ [ 𝑓 ] ( ≃ph𝐽 ) ) ( +g𝑄 ) ( 𝐺𝑧 ) ) ) )
131 128 130 mpbird ( ( 𝜑𝑓 𝑉 ) → ∀ 𝑧𝑉 ( 𝐺 ‘ ( [ 𝑓 ] ( ≃ph𝐽 ) ( +g𝑃 ) 𝑧 ) ) = ( ( 𝐺 ‘ [ 𝑓 ] ( ≃ph𝐽 ) ) ( +g𝑄 ) ( 𝐺𝑧 ) ) )
132 26 31 131 ectocld ( ( 𝜑𝑦 ∈ ( 𝑉 / ( ≃ph𝐽 ) ) ) → ∀ 𝑧𝑉 ( 𝐺 ‘ ( 𝑦 ( +g𝑃 ) 𝑧 ) ) = ( ( 𝐺𝑦 ) ( +g𝑄 ) ( 𝐺𝑧 ) ) )
133 25 132 syldan ( ( 𝜑𝑦𝑉 ) → ∀ 𝑧𝑉 ( 𝐺 ‘ ( 𝑦 ( +g𝑃 ) 𝑧 ) ) = ( ( 𝐺𝑦 ) ( +g𝑄 ) ( 𝐺𝑧 ) ) )
134 133 ralrimiva ( 𝜑 → ∀ 𝑦𝑉𝑧𝑉 ( 𝐺 ‘ ( 𝑦 ( +g𝑃 ) 𝑧 ) ) = ( ( 𝐺𝑦 ) ( +g𝑄 ) ( 𝐺𝑧 ) ) )
135 21 134 jca ( 𝜑 → ( 𝐺 : 𝑉 ⟶ ( Base ‘ 𝑄 ) ∧ ∀ 𝑦𝑉𝑧𝑉 ( 𝐺 ‘ ( 𝑦 ( +g𝑃 ) 𝑧 ) ) = ( ( 𝐺𝑦 ) ( +g𝑄 ) ( 𝐺𝑧 ) ) ) )
136 3 70 116 73 isghm ( 𝐺 ∈ ( 𝑃 GrpHom 𝑄 ) ↔ ( ( 𝑃 ∈ Grp ∧ 𝑄 ∈ Grp ) ∧ ( 𝐺 : 𝑉 ⟶ ( Base ‘ 𝑄 ) ∧ ∀ 𝑦𝑉𝑧𝑉 ( 𝐺 ‘ ( 𝑦 ( +g𝑃 ) 𝑧 ) ) = ( ( 𝐺𝑦 ) ( +g𝑄 ) ( 𝐺𝑧 ) ) ) ) )
137 10 20 135 136 syl21anbrc ( 𝜑𝐺 ∈ ( 𝑃 GrpHom 𝑄 ) )