Step |
Hyp |
Ref |
Expression |
1 |
|
pcoval.2 |
⊢ ( 𝜑 → 𝐹 ∈ ( II Cn 𝐽 ) ) |
2 |
|
pcoval.3 |
⊢ ( 𝜑 → 𝐺 ∈ ( II Cn 𝐽 ) ) |
3 |
|
pcoval2.4 |
⊢ ( 𝜑 → ( 𝐹 ‘ 1 ) = ( 𝐺 ‘ 0 ) ) |
4 |
|
copco.6 |
⊢ ( 𝜑 → 𝐻 ∈ ( 𝐽 Cn 𝐾 ) ) |
5 |
|
iiuni |
⊢ ( 0 [,] 1 ) = ∪ II |
6 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
7 |
5 6
|
cnf |
⊢ ( 𝐹 ∈ ( II Cn 𝐽 ) → 𝐹 : ( 0 [,] 1 ) ⟶ ∪ 𝐽 ) |
8 |
1 7
|
syl |
⊢ ( 𝜑 → 𝐹 : ( 0 [,] 1 ) ⟶ ∪ 𝐽 ) |
9 |
|
elii1 |
⊢ ( 𝑥 ∈ ( 0 [,] ( 1 / 2 ) ) ↔ ( 𝑥 ∈ ( 0 [,] 1 ) ∧ 𝑥 ≤ ( 1 / 2 ) ) ) |
10 |
|
iihalf1 |
⊢ ( 𝑥 ∈ ( 0 [,] ( 1 / 2 ) ) → ( 2 · 𝑥 ) ∈ ( 0 [,] 1 ) ) |
11 |
9 10
|
sylbir |
⊢ ( ( 𝑥 ∈ ( 0 [,] 1 ) ∧ 𝑥 ≤ ( 1 / 2 ) ) → ( 2 · 𝑥 ) ∈ ( 0 [,] 1 ) ) |
12 |
|
fvco3 |
⊢ ( ( 𝐹 : ( 0 [,] 1 ) ⟶ ∪ 𝐽 ∧ ( 2 · 𝑥 ) ∈ ( 0 [,] 1 ) ) → ( ( 𝐻 ∘ 𝐹 ) ‘ ( 2 · 𝑥 ) ) = ( 𝐻 ‘ ( 𝐹 ‘ ( 2 · 𝑥 ) ) ) ) |
13 |
8 11 12
|
syl2an |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 0 [,] 1 ) ∧ 𝑥 ≤ ( 1 / 2 ) ) ) → ( ( 𝐻 ∘ 𝐹 ) ‘ ( 2 · 𝑥 ) ) = ( 𝐻 ‘ ( 𝐹 ‘ ( 2 · 𝑥 ) ) ) ) |
14 |
13
|
anassrs |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 [,] 1 ) ) ∧ 𝑥 ≤ ( 1 / 2 ) ) → ( ( 𝐻 ∘ 𝐹 ) ‘ ( 2 · 𝑥 ) ) = ( 𝐻 ‘ ( 𝐹 ‘ ( 2 · 𝑥 ) ) ) ) |
15 |
5 6
|
cnf |
⊢ ( 𝐺 ∈ ( II Cn 𝐽 ) → 𝐺 : ( 0 [,] 1 ) ⟶ ∪ 𝐽 ) |
16 |
2 15
|
syl |
⊢ ( 𝜑 → 𝐺 : ( 0 [,] 1 ) ⟶ ∪ 𝐽 ) |
17 |
|
elii2 |
⊢ ( ( 𝑥 ∈ ( 0 [,] 1 ) ∧ ¬ 𝑥 ≤ ( 1 / 2 ) ) → 𝑥 ∈ ( ( 1 / 2 ) [,] 1 ) ) |
18 |
|
iihalf2 |
⊢ ( 𝑥 ∈ ( ( 1 / 2 ) [,] 1 ) → ( ( 2 · 𝑥 ) − 1 ) ∈ ( 0 [,] 1 ) ) |
19 |
17 18
|
syl |
⊢ ( ( 𝑥 ∈ ( 0 [,] 1 ) ∧ ¬ 𝑥 ≤ ( 1 / 2 ) ) → ( ( 2 · 𝑥 ) − 1 ) ∈ ( 0 [,] 1 ) ) |
20 |
|
fvco3 |
⊢ ( ( 𝐺 : ( 0 [,] 1 ) ⟶ ∪ 𝐽 ∧ ( ( 2 · 𝑥 ) − 1 ) ∈ ( 0 [,] 1 ) ) → ( ( 𝐻 ∘ 𝐺 ) ‘ ( ( 2 · 𝑥 ) − 1 ) ) = ( 𝐻 ‘ ( 𝐺 ‘ ( ( 2 · 𝑥 ) − 1 ) ) ) ) |
21 |
16 19 20
|
syl2an |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 0 [,] 1 ) ∧ ¬ 𝑥 ≤ ( 1 / 2 ) ) ) → ( ( 𝐻 ∘ 𝐺 ) ‘ ( ( 2 · 𝑥 ) − 1 ) ) = ( 𝐻 ‘ ( 𝐺 ‘ ( ( 2 · 𝑥 ) − 1 ) ) ) ) |
22 |
21
|
anassrs |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 [,] 1 ) ) ∧ ¬ 𝑥 ≤ ( 1 / 2 ) ) → ( ( 𝐻 ∘ 𝐺 ) ‘ ( ( 2 · 𝑥 ) − 1 ) ) = ( 𝐻 ‘ ( 𝐺 ‘ ( ( 2 · 𝑥 ) − 1 ) ) ) ) |
23 |
14 22
|
ifeq12da |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 [,] 1 ) ) → if ( 𝑥 ≤ ( 1 / 2 ) , ( ( 𝐻 ∘ 𝐹 ) ‘ ( 2 · 𝑥 ) ) , ( ( 𝐻 ∘ 𝐺 ) ‘ ( ( 2 · 𝑥 ) − 1 ) ) ) = if ( 𝑥 ≤ ( 1 / 2 ) , ( 𝐻 ‘ ( 𝐹 ‘ ( 2 · 𝑥 ) ) ) , ( 𝐻 ‘ ( 𝐺 ‘ ( ( 2 · 𝑥 ) − 1 ) ) ) ) ) |
24 |
23
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 ≤ ( 1 / 2 ) , ( ( 𝐻 ∘ 𝐹 ) ‘ ( 2 · 𝑥 ) ) , ( ( 𝐻 ∘ 𝐺 ) ‘ ( ( 2 · 𝑥 ) − 1 ) ) ) ) = ( 𝑥 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 ≤ ( 1 / 2 ) , ( 𝐻 ‘ ( 𝐹 ‘ ( 2 · 𝑥 ) ) ) , ( 𝐻 ‘ ( 𝐺 ‘ ( ( 2 · 𝑥 ) − 1 ) ) ) ) ) ) |
25 |
|
cnco |
⊢ ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ 𝐻 ∈ ( 𝐽 Cn 𝐾 ) ) → ( 𝐻 ∘ 𝐹 ) ∈ ( II Cn 𝐾 ) ) |
26 |
1 4 25
|
syl2anc |
⊢ ( 𝜑 → ( 𝐻 ∘ 𝐹 ) ∈ ( II Cn 𝐾 ) ) |
27 |
|
cnco |
⊢ ( ( 𝐺 ∈ ( II Cn 𝐽 ) ∧ 𝐻 ∈ ( 𝐽 Cn 𝐾 ) ) → ( 𝐻 ∘ 𝐺 ) ∈ ( II Cn 𝐾 ) ) |
28 |
2 4 27
|
syl2anc |
⊢ ( 𝜑 → ( 𝐻 ∘ 𝐺 ) ∈ ( II Cn 𝐾 ) ) |
29 |
26 28
|
pcoval |
⊢ ( 𝜑 → ( ( 𝐻 ∘ 𝐹 ) ( *𝑝 ‘ 𝐾 ) ( 𝐻 ∘ 𝐺 ) ) = ( 𝑥 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 ≤ ( 1 / 2 ) , ( ( 𝐻 ∘ 𝐹 ) ‘ ( 2 · 𝑥 ) ) , ( ( 𝐻 ∘ 𝐺 ) ‘ ( ( 2 · 𝑥 ) − 1 ) ) ) ) ) |
30 |
1 2
|
pcoval |
⊢ ( 𝜑 → ( 𝐹 ( *𝑝 ‘ 𝐽 ) 𝐺 ) = ( 𝑥 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 ≤ ( 1 / 2 ) , ( 𝐹 ‘ ( 2 · 𝑥 ) ) , ( 𝐺 ‘ ( ( 2 · 𝑥 ) − 1 ) ) ) ) ) |
31 |
1 2 3
|
pcocn |
⊢ ( 𝜑 → ( 𝐹 ( *𝑝 ‘ 𝐽 ) 𝐺 ) ∈ ( II Cn 𝐽 ) ) |
32 |
30 31
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 ≤ ( 1 / 2 ) , ( 𝐹 ‘ ( 2 · 𝑥 ) ) , ( 𝐺 ‘ ( ( 2 · 𝑥 ) − 1 ) ) ) ) ∈ ( II Cn 𝐽 ) ) |
33 |
5 6
|
cnf |
⊢ ( ( 𝑥 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 ≤ ( 1 / 2 ) , ( 𝐹 ‘ ( 2 · 𝑥 ) ) , ( 𝐺 ‘ ( ( 2 · 𝑥 ) − 1 ) ) ) ) ∈ ( II Cn 𝐽 ) → ( 𝑥 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 ≤ ( 1 / 2 ) , ( 𝐹 ‘ ( 2 · 𝑥 ) ) , ( 𝐺 ‘ ( ( 2 · 𝑥 ) − 1 ) ) ) ) : ( 0 [,] 1 ) ⟶ ∪ 𝐽 ) |
34 |
32 33
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 ≤ ( 1 / 2 ) , ( 𝐹 ‘ ( 2 · 𝑥 ) ) , ( 𝐺 ‘ ( ( 2 · 𝑥 ) − 1 ) ) ) ) : ( 0 [,] 1 ) ⟶ ∪ 𝐽 ) |
35 |
|
eqid |
⊢ ( 𝑥 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 ≤ ( 1 / 2 ) , ( 𝐹 ‘ ( 2 · 𝑥 ) ) , ( 𝐺 ‘ ( ( 2 · 𝑥 ) − 1 ) ) ) ) = ( 𝑥 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 ≤ ( 1 / 2 ) , ( 𝐹 ‘ ( 2 · 𝑥 ) ) , ( 𝐺 ‘ ( ( 2 · 𝑥 ) − 1 ) ) ) ) |
36 |
35
|
fmpt |
⊢ ( ∀ 𝑥 ∈ ( 0 [,] 1 ) if ( 𝑥 ≤ ( 1 / 2 ) , ( 𝐹 ‘ ( 2 · 𝑥 ) ) , ( 𝐺 ‘ ( ( 2 · 𝑥 ) − 1 ) ) ) ∈ ∪ 𝐽 ↔ ( 𝑥 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 ≤ ( 1 / 2 ) , ( 𝐹 ‘ ( 2 · 𝑥 ) ) , ( 𝐺 ‘ ( ( 2 · 𝑥 ) − 1 ) ) ) ) : ( 0 [,] 1 ) ⟶ ∪ 𝐽 ) |
37 |
34 36
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 0 [,] 1 ) if ( 𝑥 ≤ ( 1 / 2 ) , ( 𝐹 ‘ ( 2 · 𝑥 ) ) , ( 𝐺 ‘ ( ( 2 · 𝑥 ) − 1 ) ) ) ∈ ∪ 𝐽 ) |
38 |
|
eqid |
⊢ ∪ 𝐾 = ∪ 𝐾 |
39 |
6 38
|
cnf |
⊢ ( 𝐻 ∈ ( 𝐽 Cn 𝐾 ) → 𝐻 : ∪ 𝐽 ⟶ ∪ 𝐾 ) |
40 |
4 39
|
syl |
⊢ ( 𝜑 → 𝐻 : ∪ 𝐽 ⟶ ∪ 𝐾 ) |
41 |
40
|
feqmptd |
⊢ ( 𝜑 → 𝐻 = ( 𝑦 ∈ ∪ 𝐽 ↦ ( 𝐻 ‘ 𝑦 ) ) ) |
42 |
|
fveq2 |
⊢ ( 𝑦 = if ( 𝑥 ≤ ( 1 / 2 ) , ( 𝐹 ‘ ( 2 · 𝑥 ) ) , ( 𝐺 ‘ ( ( 2 · 𝑥 ) − 1 ) ) ) → ( 𝐻 ‘ 𝑦 ) = ( 𝐻 ‘ if ( 𝑥 ≤ ( 1 / 2 ) , ( 𝐹 ‘ ( 2 · 𝑥 ) ) , ( 𝐺 ‘ ( ( 2 · 𝑥 ) − 1 ) ) ) ) ) |
43 |
|
fvif |
⊢ ( 𝐻 ‘ if ( 𝑥 ≤ ( 1 / 2 ) , ( 𝐹 ‘ ( 2 · 𝑥 ) ) , ( 𝐺 ‘ ( ( 2 · 𝑥 ) − 1 ) ) ) ) = if ( 𝑥 ≤ ( 1 / 2 ) , ( 𝐻 ‘ ( 𝐹 ‘ ( 2 · 𝑥 ) ) ) , ( 𝐻 ‘ ( 𝐺 ‘ ( ( 2 · 𝑥 ) − 1 ) ) ) ) |
44 |
42 43
|
eqtrdi |
⊢ ( 𝑦 = if ( 𝑥 ≤ ( 1 / 2 ) , ( 𝐹 ‘ ( 2 · 𝑥 ) ) , ( 𝐺 ‘ ( ( 2 · 𝑥 ) − 1 ) ) ) → ( 𝐻 ‘ 𝑦 ) = if ( 𝑥 ≤ ( 1 / 2 ) , ( 𝐻 ‘ ( 𝐹 ‘ ( 2 · 𝑥 ) ) ) , ( 𝐻 ‘ ( 𝐺 ‘ ( ( 2 · 𝑥 ) − 1 ) ) ) ) ) |
45 |
37 30 41 44
|
fmptcof |
⊢ ( 𝜑 → ( 𝐻 ∘ ( 𝐹 ( *𝑝 ‘ 𝐽 ) 𝐺 ) ) = ( 𝑥 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 ≤ ( 1 / 2 ) , ( 𝐻 ‘ ( 𝐹 ‘ ( 2 · 𝑥 ) ) ) , ( 𝐻 ‘ ( 𝐺 ‘ ( ( 2 · 𝑥 ) − 1 ) ) ) ) ) ) |
46 |
24 29 45
|
3eqtr4rd |
⊢ ( 𝜑 → ( 𝐻 ∘ ( 𝐹 ( *𝑝 ‘ 𝐽 ) 𝐺 ) ) = ( ( 𝐻 ∘ 𝐹 ) ( *𝑝 ‘ 𝐾 ) ( 𝐻 ∘ 𝐺 ) ) ) |