Step |
Hyp |
Ref |
Expression |
1 |
|
pi1co.p |
⊢ 𝑃 = ( 𝐽 π1 𝐴 ) |
2 |
|
pi1co.q |
⊢ 𝑄 = ( 𝐾 π1 𝐵 ) |
3 |
|
pi1co.v |
⊢ 𝑉 = ( Base ‘ 𝑃 ) |
4 |
|
pi1co.g |
⊢ 𝐺 = ran ( 𝑔 ∈ ∪ 𝑉 ↦ 〈 [ 𝑔 ] ( ≃ph ‘ 𝐽 ) , [ ( 𝐹 ∘ 𝑔 ) ] ( ≃ph ‘ 𝐾 ) 〉 ) |
5 |
|
pi1co.j |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
6 |
|
pi1co.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) |
7 |
|
pi1co.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) |
8 |
|
pi1co.b |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) = 𝐵 ) |
9 |
|
fvex |
⊢ ( ≃ph ‘ 𝐽 ) ∈ V |
10 |
|
ecexg |
⊢ ( ( ≃ph ‘ 𝐽 ) ∈ V → [ 𝑔 ] ( ≃ph ‘ 𝐽 ) ∈ V ) |
11 |
9 10
|
mp1i |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ∪ 𝑉 ) → [ 𝑔 ] ( ≃ph ‘ 𝐽 ) ∈ V ) |
12 |
|
eqid |
⊢ ( Base ‘ 𝑄 ) = ( Base ‘ 𝑄 ) |
13 |
|
cntop2 |
⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐾 ∈ Top ) |
14 |
6 13
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ Top ) |
15 |
|
toptopon2 |
⊢ ( 𝐾 ∈ Top ↔ 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ) |
16 |
14 15
|
sylib |
⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ) |
17 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ∪ 𝑉 ) → 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ) |
18 |
|
cnf2 |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → 𝐹 : 𝑋 ⟶ ∪ 𝐾 ) |
19 |
5 16 6 18
|
syl3anc |
⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ∪ 𝐾 ) |
20 |
19 7
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) ∈ ∪ 𝐾 ) |
21 |
8 20
|
eqeltrrd |
⊢ ( 𝜑 → 𝐵 ∈ ∪ 𝐾 ) |
22 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ∪ 𝑉 ) → 𝐵 ∈ ∪ 𝐾 ) |
23 |
3
|
a1i |
⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝑃 ) ) |
24 |
1 5 7 23
|
pi1eluni |
⊢ ( 𝜑 → ( 𝑔 ∈ ∪ 𝑉 ↔ ( 𝑔 ∈ ( II Cn 𝐽 ) ∧ ( 𝑔 ‘ 0 ) = 𝐴 ∧ ( 𝑔 ‘ 1 ) = 𝐴 ) ) ) |
25 |
24
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ∪ 𝑉 ) → ( 𝑔 ∈ ( II Cn 𝐽 ) ∧ ( 𝑔 ‘ 0 ) = 𝐴 ∧ ( 𝑔 ‘ 1 ) = 𝐴 ) ) |
26 |
25
|
simp1d |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ∪ 𝑉 ) → 𝑔 ∈ ( II Cn 𝐽 ) ) |
27 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ∪ 𝑉 ) → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) |
28 |
|
cnco |
⊢ ( ( 𝑔 ∈ ( II Cn 𝐽 ) ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → ( 𝐹 ∘ 𝑔 ) ∈ ( II Cn 𝐾 ) ) |
29 |
26 27 28
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ∪ 𝑉 ) → ( 𝐹 ∘ 𝑔 ) ∈ ( II Cn 𝐾 ) ) |
30 |
|
iitopon |
⊢ II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) |
31 |
|
cnf2 |
⊢ ( ( II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) ∧ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑔 ∈ ( II Cn 𝐽 ) ) → 𝑔 : ( 0 [,] 1 ) ⟶ 𝑋 ) |
32 |
30 5 26 31
|
mp3an2ani |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ∪ 𝑉 ) → 𝑔 : ( 0 [,] 1 ) ⟶ 𝑋 ) |
33 |
|
0elunit |
⊢ 0 ∈ ( 0 [,] 1 ) |
34 |
|
fvco3 |
⊢ ( ( 𝑔 : ( 0 [,] 1 ) ⟶ 𝑋 ∧ 0 ∈ ( 0 [,] 1 ) ) → ( ( 𝐹 ∘ 𝑔 ) ‘ 0 ) = ( 𝐹 ‘ ( 𝑔 ‘ 0 ) ) ) |
35 |
32 33 34
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ∪ 𝑉 ) → ( ( 𝐹 ∘ 𝑔 ) ‘ 0 ) = ( 𝐹 ‘ ( 𝑔 ‘ 0 ) ) ) |
36 |
25
|
simp2d |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ∪ 𝑉 ) → ( 𝑔 ‘ 0 ) = 𝐴 ) |
37 |
36
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ∪ 𝑉 ) → ( 𝐹 ‘ ( 𝑔 ‘ 0 ) ) = ( 𝐹 ‘ 𝐴 ) ) |
38 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ∪ 𝑉 ) → ( 𝐹 ‘ 𝐴 ) = 𝐵 ) |
39 |
35 37 38
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ∪ 𝑉 ) → ( ( 𝐹 ∘ 𝑔 ) ‘ 0 ) = 𝐵 ) |
40 |
|
1elunit |
⊢ 1 ∈ ( 0 [,] 1 ) |
41 |
|
fvco3 |
⊢ ( ( 𝑔 : ( 0 [,] 1 ) ⟶ 𝑋 ∧ 1 ∈ ( 0 [,] 1 ) ) → ( ( 𝐹 ∘ 𝑔 ) ‘ 1 ) = ( 𝐹 ‘ ( 𝑔 ‘ 1 ) ) ) |
42 |
32 40 41
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ∪ 𝑉 ) → ( ( 𝐹 ∘ 𝑔 ) ‘ 1 ) = ( 𝐹 ‘ ( 𝑔 ‘ 1 ) ) ) |
43 |
25
|
simp3d |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ∪ 𝑉 ) → ( 𝑔 ‘ 1 ) = 𝐴 ) |
44 |
43
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ∪ 𝑉 ) → ( 𝐹 ‘ ( 𝑔 ‘ 1 ) ) = ( 𝐹 ‘ 𝐴 ) ) |
45 |
42 44 38
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ∪ 𝑉 ) → ( ( 𝐹 ∘ 𝑔 ) ‘ 1 ) = 𝐵 ) |
46 |
2 12 17 22 29 39 45
|
elpi1i |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ∪ 𝑉 ) → [ ( 𝐹 ∘ 𝑔 ) ] ( ≃ph ‘ 𝐾 ) ∈ ( Base ‘ 𝑄 ) ) |
47 |
|
eceq1 |
⊢ ( 𝑔 = ℎ → [ 𝑔 ] ( ≃ph ‘ 𝐽 ) = [ ℎ ] ( ≃ph ‘ 𝐽 ) ) |
48 |
|
coeq2 |
⊢ ( 𝑔 = ℎ → ( 𝐹 ∘ 𝑔 ) = ( 𝐹 ∘ ℎ ) ) |
49 |
48
|
eceq1d |
⊢ ( 𝑔 = ℎ → [ ( 𝐹 ∘ 𝑔 ) ] ( ≃ph ‘ 𝐾 ) = [ ( 𝐹 ∘ ℎ ) ] ( ≃ph ‘ 𝐾 ) ) |
50 |
|
phtpcer |
⊢ ( ≃ph ‘ 𝐾 ) Er ( II Cn 𝐾 ) |
51 |
50
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ ∪ 𝑉 ∧ ℎ ∈ ∪ 𝑉 ∧ [ 𝑔 ] ( ≃ph ‘ 𝐽 ) = [ ℎ ] ( ≃ph ‘ 𝐽 ) ) ) → ( ≃ph ‘ 𝐾 ) Er ( II Cn 𝐾 ) ) |
52 |
|
simpr3 |
⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ ∪ 𝑉 ∧ ℎ ∈ ∪ 𝑉 ∧ [ 𝑔 ] ( ≃ph ‘ 𝐽 ) = [ ℎ ] ( ≃ph ‘ 𝐽 ) ) ) → [ 𝑔 ] ( ≃ph ‘ 𝐽 ) = [ ℎ ] ( ≃ph ‘ 𝐽 ) ) |
53 |
|
phtpcer |
⊢ ( ≃ph ‘ 𝐽 ) Er ( II Cn 𝐽 ) |
54 |
53
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ ∪ 𝑉 ∧ ℎ ∈ ∪ 𝑉 ∧ [ 𝑔 ] ( ≃ph ‘ 𝐽 ) = [ ℎ ] ( ≃ph ‘ 𝐽 ) ) ) → ( ≃ph ‘ 𝐽 ) Er ( II Cn 𝐽 ) ) |
55 |
|
simpr1 |
⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ ∪ 𝑉 ∧ ℎ ∈ ∪ 𝑉 ∧ [ 𝑔 ] ( ≃ph ‘ 𝐽 ) = [ ℎ ] ( ≃ph ‘ 𝐽 ) ) ) → 𝑔 ∈ ∪ 𝑉 ) |
56 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ ∪ 𝑉 ∧ ℎ ∈ ∪ 𝑉 ∧ [ 𝑔 ] ( ≃ph ‘ 𝐽 ) = [ ℎ ] ( ≃ph ‘ 𝐽 ) ) ) → ( 𝑔 ∈ ∪ 𝑉 ↔ ( 𝑔 ∈ ( II Cn 𝐽 ) ∧ ( 𝑔 ‘ 0 ) = 𝐴 ∧ ( 𝑔 ‘ 1 ) = 𝐴 ) ) ) |
57 |
55 56
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ ∪ 𝑉 ∧ ℎ ∈ ∪ 𝑉 ∧ [ 𝑔 ] ( ≃ph ‘ 𝐽 ) = [ ℎ ] ( ≃ph ‘ 𝐽 ) ) ) → ( 𝑔 ∈ ( II Cn 𝐽 ) ∧ ( 𝑔 ‘ 0 ) = 𝐴 ∧ ( 𝑔 ‘ 1 ) = 𝐴 ) ) |
58 |
57
|
simp1d |
⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ ∪ 𝑉 ∧ ℎ ∈ ∪ 𝑉 ∧ [ 𝑔 ] ( ≃ph ‘ 𝐽 ) = [ ℎ ] ( ≃ph ‘ 𝐽 ) ) ) → 𝑔 ∈ ( II Cn 𝐽 ) ) |
59 |
54 58
|
erth |
⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ ∪ 𝑉 ∧ ℎ ∈ ∪ 𝑉 ∧ [ 𝑔 ] ( ≃ph ‘ 𝐽 ) = [ ℎ ] ( ≃ph ‘ 𝐽 ) ) ) → ( 𝑔 ( ≃ph ‘ 𝐽 ) ℎ ↔ [ 𝑔 ] ( ≃ph ‘ 𝐽 ) = [ ℎ ] ( ≃ph ‘ 𝐽 ) ) ) |
60 |
52 59
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ ∪ 𝑉 ∧ ℎ ∈ ∪ 𝑉 ∧ [ 𝑔 ] ( ≃ph ‘ 𝐽 ) = [ ℎ ] ( ≃ph ‘ 𝐽 ) ) ) → 𝑔 ( ≃ph ‘ 𝐽 ) ℎ ) |
61 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ ∪ 𝑉 ∧ ℎ ∈ ∪ 𝑉 ∧ [ 𝑔 ] ( ≃ph ‘ 𝐽 ) = [ ℎ ] ( ≃ph ‘ 𝐽 ) ) ) → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) |
62 |
60 61
|
phtpcco2 |
⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ ∪ 𝑉 ∧ ℎ ∈ ∪ 𝑉 ∧ [ 𝑔 ] ( ≃ph ‘ 𝐽 ) = [ ℎ ] ( ≃ph ‘ 𝐽 ) ) ) → ( 𝐹 ∘ 𝑔 ) ( ≃ph ‘ 𝐾 ) ( 𝐹 ∘ ℎ ) ) |
63 |
51 62
|
erthi |
⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ ∪ 𝑉 ∧ ℎ ∈ ∪ 𝑉 ∧ [ 𝑔 ] ( ≃ph ‘ 𝐽 ) = [ ℎ ] ( ≃ph ‘ 𝐽 ) ) ) → [ ( 𝐹 ∘ 𝑔 ) ] ( ≃ph ‘ 𝐾 ) = [ ( 𝐹 ∘ ℎ ) ] ( ≃ph ‘ 𝐾 ) ) |
64 |
4 11 46 47 49 63
|
fliftfund |
⊢ ( 𝜑 → Fun 𝐺 ) |
65 |
4 11 46
|
fliftf |
⊢ ( 𝜑 → ( Fun 𝐺 ↔ 𝐺 : ran ( 𝑔 ∈ ∪ 𝑉 ↦ [ 𝑔 ] ( ≃ph ‘ 𝐽 ) ) ⟶ ( Base ‘ 𝑄 ) ) ) |
66 |
64 65
|
mpbid |
⊢ ( 𝜑 → 𝐺 : ran ( 𝑔 ∈ ∪ 𝑉 ↦ [ 𝑔 ] ( ≃ph ‘ 𝐽 ) ) ⟶ ( Base ‘ 𝑄 ) ) |
67 |
1 5 7 23
|
pi1bas2 |
⊢ ( 𝜑 → 𝑉 = ( ∪ 𝑉 / ( ≃ph ‘ 𝐽 ) ) ) |
68 |
|
df-qs |
⊢ ( ∪ 𝑉 / ( ≃ph ‘ 𝐽 ) ) = { 𝑠 ∣ ∃ 𝑔 ∈ ∪ 𝑉 𝑠 = [ 𝑔 ] ( ≃ph ‘ 𝐽 ) } |
69 |
|
eqid |
⊢ ( 𝑔 ∈ ∪ 𝑉 ↦ [ 𝑔 ] ( ≃ph ‘ 𝐽 ) ) = ( 𝑔 ∈ ∪ 𝑉 ↦ [ 𝑔 ] ( ≃ph ‘ 𝐽 ) ) |
70 |
69
|
rnmpt |
⊢ ran ( 𝑔 ∈ ∪ 𝑉 ↦ [ 𝑔 ] ( ≃ph ‘ 𝐽 ) ) = { 𝑠 ∣ ∃ 𝑔 ∈ ∪ 𝑉 𝑠 = [ 𝑔 ] ( ≃ph ‘ 𝐽 ) } |
71 |
68 70
|
eqtr4i |
⊢ ( ∪ 𝑉 / ( ≃ph ‘ 𝐽 ) ) = ran ( 𝑔 ∈ ∪ 𝑉 ↦ [ 𝑔 ] ( ≃ph ‘ 𝐽 ) ) |
72 |
67 71
|
eqtrdi |
⊢ ( 𝜑 → 𝑉 = ran ( 𝑔 ∈ ∪ 𝑉 ↦ [ 𝑔 ] ( ≃ph ‘ 𝐽 ) ) ) |
73 |
72
|
feq2d |
⊢ ( 𝜑 → ( 𝐺 : 𝑉 ⟶ ( Base ‘ 𝑄 ) ↔ 𝐺 : ran ( 𝑔 ∈ ∪ 𝑉 ↦ [ 𝑔 ] ( ≃ph ‘ 𝐽 ) ) ⟶ ( Base ‘ 𝑄 ) ) ) |
74 |
66 73
|
mpbird |
⊢ ( 𝜑 → 𝐺 : 𝑉 ⟶ ( Base ‘ 𝑄 ) ) |