Metamath Proof Explorer


Theorem pi1coval

Description: The value of the loop transfer function on the equivalence class of a path. (Contributed by Mario Carneiro, 10-Aug-2015) (Proof shortened by Mario Carneiro, 23-Dec-2016)

Ref Expression
Hypotheses pi1co.p 𝑃 = ( 𝐽 π1 𝐴 )
pi1co.q 𝑄 = ( 𝐾 π1 𝐵 )
pi1co.v 𝑉 = ( Base ‘ 𝑃 )
pi1co.g 𝐺 = ran ( 𝑔 𝑉 ↦ ⟨ [ 𝑔 ] ( ≃ph𝐽 ) , [ ( 𝐹𝑔 ) ] ( ≃ph𝐾 ) ⟩ )
pi1co.j ( 𝜑𝐽 ∈ ( TopOn ‘ 𝑋 ) )
pi1co.f ( 𝜑𝐹 ∈ ( 𝐽 Cn 𝐾 ) )
pi1co.a ( 𝜑𝐴𝑋 )
pi1co.b ( 𝜑 → ( 𝐹𝐴 ) = 𝐵 )
Assertion pi1coval ( ( 𝜑𝑇 𝑉 ) → ( 𝐺 ‘ [ 𝑇 ] ( ≃ph𝐽 ) ) = [ ( 𝐹𝑇 ) ] ( ≃ph𝐾 ) )

Proof

Step Hyp Ref Expression
1 pi1co.p 𝑃 = ( 𝐽 π1 𝐴 )
2 pi1co.q 𝑄 = ( 𝐾 π1 𝐵 )
3 pi1co.v 𝑉 = ( Base ‘ 𝑃 )
4 pi1co.g 𝐺 = ran ( 𝑔 𝑉 ↦ ⟨ [ 𝑔 ] ( ≃ph𝐽 ) , [ ( 𝐹𝑔 ) ] ( ≃ph𝐾 ) ⟩ )
5 pi1co.j ( 𝜑𝐽 ∈ ( TopOn ‘ 𝑋 ) )
6 pi1co.f ( 𝜑𝐹 ∈ ( 𝐽 Cn 𝐾 ) )
7 pi1co.a ( 𝜑𝐴𝑋 )
8 pi1co.b ( 𝜑 → ( 𝐹𝐴 ) = 𝐵 )
9 fvex ( ≃ph𝐽 ) ∈ V
10 ecexg ( ( ≃ph𝐽 ) ∈ V → [ 𝑔 ] ( ≃ph𝐽 ) ∈ V )
11 9 10 mp1i ( ( 𝜑𝑔 𝑉 ) → [ 𝑔 ] ( ≃ph𝐽 ) ∈ V )
12 fvex ( ≃ph𝐾 ) ∈ V
13 ecexg ( ( ≃ph𝐾 ) ∈ V → [ ( 𝐹𝑔 ) ] ( ≃ph𝐾 ) ∈ V )
14 12 13 mp1i ( ( 𝜑𝑔 𝑉 ) → [ ( 𝐹𝑔 ) ] ( ≃ph𝐾 ) ∈ V )
15 eceq1 ( 𝑔 = 𝑇 → [ 𝑔 ] ( ≃ph𝐽 ) = [ 𝑇 ] ( ≃ph𝐽 ) )
16 coeq2 ( 𝑔 = 𝑇 → ( 𝐹𝑔 ) = ( 𝐹𝑇 ) )
17 16 eceq1d ( 𝑔 = 𝑇 → [ ( 𝐹𝑔 ) ] ( ≃ph𝐾 ) = [ ( 𝐹𝑇 ) ] ( ≃ph𝐾 ) )
18 1 2 3 4 5 6 7 8 pi1cof ( 𝜑𝐺 : 𝑉 ⟶ ( Base ‘ 𝑄 ) )
19 18 ffund ( 𝜑 → Fun 𝐺 )
20 4 11 14 15 17 19 fliftval ( ( 𝜑𝑇 𝑉 ) → ( 𝐺 ‘ [ 𝑇 ] ( ≃ph𝐽 ) ) = [ ( 𝐹𝑇 ) ] ( ≃ph𝐾 ) )