| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pi1co.p |
⊢ 𝑃 = ( 𝐽 π1 𝐴 ) |
| 2 |
|
pi1co.q |
⊢ 𝑄 = ( 𝐾 π1 𝐵 ) |
| 3 |
|
pi1co.v |
⊢ 𝑉 = ( Base ‘ 𝑃 ) |
| 4 |
|
pi1co.g |
⊢ 𝐺 = ran ( 𝑔 ∈ ∪ 𝑉 ↦ 〈 [ 𝑔 ] ( ≃ph ‘ 𝐽 ) , [ ( 𝐹 ∘ 𝑔 ) ] ( ≃ph ‘ 𝐾 ) 〉 ) |
| 5 |
|
pi1co.j |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 6 |
|
pi1co.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) |
| 7 |
|
pi1co.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) |
| 8 |
|
pi1co.b |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) = 𝐵 ) |
| 9 |
|
fvex |
⊢ ( ≃ph ‘ 𝐽 ) ∈ V |
| 10 |
|
ecexg |
⊢ ( ( ≃ph ‘ 𝐽 ) ∈ V → [ 𝑔 ] ( ≃ph ‘ 𝐽 ) ∈ V ) |
| 11 |
9 10
|
mp1i |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ∪ 𝑉 ) → [ 𝑔 ] ( ≃ph ‘ 𝐽 ) ∈ V ) |
| 12 |
|
fvex |
⊢ ( ≃ph ‘ 𝐾 ) ∈ V |
| 13 |
|
ecexg |
⊢ ( ( ≃ph ‘ 𝐾 ) ∈ V → [ ( 𝐹 ∘ 𝑔 ) ] ( ≃ph ‘ 𝐾 ) ∈ V ) |
| 14 |
12 13
|
mp1i |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ∪ 𝑉 ) → [ ( 𝐹 ∘ 𝑔 ) ] ( ≃ph ‘ 𝐾 ) ∈ V ) |
| 15 |
|
eceq1 |
⊢ ( 𝑔 = 𝑇 → [ 𝑔 ] ( ≃ph ‘ 𝐽 ) = [ 𝑇 ] ( ≃ph ‘ 𝐽 ) ) |
| 16 |
|
coeq2 |
⊢ ( 𝑔 = 𝑇 → ( 𝐹 ∘ 𝑔 ) = ( 𝐹 ∘ 𝑇 ) ) |
| 17 |
16
|
eceq1d |
⊢ ( 𝑔 = 𝑇 → [ ( 𝐹 ∘ 𝑔 ) ] ( ≃ph ‘ 𝐾 ) = [ ( 𝐹 ∘ 𝑇 ) ] ( ≃ph ‘ 𝐾 ) ) |
| 18 |
1 2 3 4 5 6 7 8
|
pi1cof |
⊢ ( 𝜑 → 𝐺 : 𝑉 ⟶ ( Base ‘ 𝑄 ) ) |
| 19 |
18
|
ffund |
⊢ ( 𝜑 → Fun 𝐺 ) |
| 20 |
4 11 14 15 17 19
|
fliftval |
⊢ ( ( 𝜑 ∧ 𝑇 ∈ ∪ 𝑉 ) → ( 𝐺 ‘ [ 𝑇 ] ( ≃ph ‘ 𝐽 ) ) = [ ( 𝐹 ∘ 𝑇 ) ] ( ≃ph ‘ 𝐾 ) ) |