| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pi1co.p |
|- P = ( J pi1 A ) |
| 2 |
|
pi1co.q |
|- Q = ( K pi1 B ) |
| 3 |
|
pi1co.v |
|- V = ( Base ` P ) |
| 4 |
|
pi1co.g |
|- G = ran ( g e. U. V |-> <. [ g ] ( ~=ph ` J ) , [ ( F o. g ) ] ( ~=ph ` K ) >. ) |
| 5 |
|
pi1co.j |
|- ( ph -> J e. ( TopOn ` X ) ) |
| 6 |
|
pi1co.f |
|- ( ph -> F e. ( J Cn K ) ) |
| 7 |
|
pi1co.a |
|- ( ph -> A e. X ) |
| 8 |
|
pi1co.b |
|- ( ph -> ( F ` A ) = B ) |
| 9 |
|
fvex |
|- ( ~=ph ` J ) e. _V |
| 10 |
|
ecexg |
|- ( ( ~=ph ` J ) e. _V -> [ g ] ( ~=ph ` J ) e. _V ) |
| 11 |
9 10
|
mp1i |
|- ( ( ph /\ g e. U. V ) -> [ g ] ( ~=ph ` J ) e. _V ) |
| 12 |
|
fvex |
|- ( ~=ph ` K ) e. _V |
| 13 |
|
ecexg |
|- ( ( ~=ph ` K ) e. _V -> [ ( F o. g ) ] ( ~=ph ` K ) e. _V ) |
| 14 |
12 13
|
mp1i |
|- ( ( ph /\ g e. U. V ) -> [ ( F o. g ) ] ( ~=ph ` K ) e. _V ) |
| 15 |
|
eceq1 |
|- ( g = T -> [ g ] ( ~=ph ` J ) = [ T ] ( ~=ph ` J ) ) |
| 16 |
|
coeq2 |
|- ( g = T -> ( F o. g ) = ( F o. T ) ) |
| 17 |
16
|
eceq1d |
|- ( g = T -> [ ( F o. g ) ] ( ~=ph ` K ) = [ ( F o. T ) ] ( ~=ph ` K ) ) |
| 18 |
1 2 3 4 5 6 7 8
|
pi1cof |
|- ( ph -> G : V --> ( Base ` Q ) ) |
| 19 |
18
|
ffund |
|- ( ph -> Fun G ) |
| 20 |
4 11 14 15 17 19
|
fliftval |
|- ( ( ph /\ T e. U. V ) -> ( G ` [ T ] ( ~=ph ` J ) ) = [ ( F o. T ) ] ( ~=ph ` K ) ) |