Metamath Proof Explorer


Theorem pi1coval

Description: The value of the loop transfer function on the equivalence class of a path. (Contributed by Mario Carneiro, 10-Aug-2015) (Proof shortened by Mario Carneiro, 23-Dec-2016)

Ref Expression
Hypotheses pi1co.p
|- P = ( J pi1 A )
pi1co.q
|- Q = ( K pi1 B )
pi1co.v
|- V = ( Base ` P )
pi1co.g
|- G = ran ( g e. U. V |-> <. [ g ] ( ~=ph ` J ) , [ ( F o. g ) ] ( ~=ph ` K ) >. )
pi1co.j
|- ( ph -> J e. ( TopOn ` X ) )
pi1co.f
|- ( ph -> F e. ( J Cn K ) )
pi1co.a
|- ( ph -> A e. X )
pi1co.b
|- ( ph -> ( F ` A ) = B )
Assertion pi1coval
|- ( ( ph /\ T e. U. V ) -> ( G ` [ T ] ( ~=ph ` J ) ) = [ ( F o. T ) ] ( ~=ph ` K ) )

Proof

Step Hyp Ref Expression
1 pi1co.p
 |-  P = ( J pi1 A )
2 pi1co.q
 |-  Q = ( K pi1 B )
3 pi1co.v
 |-  V = ( Base ` P )
4 pi1co.g
 |-  G = ran ( g e. U. V |-> <. [ g ] ( ~=ph ` J ) , [ ( F o. g ) ] ( ~=ph ` K ) >. )
5 pi1co.j
 |-  ( ph -> J e. ( TopOn ` X ) )
6 pi1co.f
 |-  ( ph -> F e. ( J Cn K ) )
7 pi1co.a
 |-  ( ph -> A e. X )
8 pi1co.b
 |-  ( ph -> ( F ` A ) = B )
9 fvex
 |-  ( ~=ph ` J ) e. _V
10 ecexg
 |-  ( ( ~=ph ` J ) e. _V -> [ g ] ( ~=ph ` J ) e. _V )
11 9 10 mp1i
 |-  ( ( ph /\ g e. U. V ) -> [ g ] ( ~=ph ` J ) e. _V )
12 fvex
 |-  ( ~=ph ` K ) e. _V
13 ecexg
 |-  ( ( ~=ph ` K ) e. _V -> [ ( F o. g ) ] ( ~=ph ` K ) e. _V )
14 12 13 mp1i
 |-  ( ( ph /\ g e. U. V ) -> [ ( F o. g ) ] ( ~=ph ` K ) e. _V )
15 eceq1
 |-  ( g = T -> [ g ] ( ~=ph ` J ) = [ T ] ( ~=ph ` J ) )
16 coeq2
 |-  ( g = T -> ( F o. g ) = ( F o. T ) )
17 16 eceq1d
 |-  ( g = T -> [ ( F o. g ) ] ( ~=ph ` K ) = [ ( F o. T ) ] ( ~=ph ` K ) )
18 1 2 3 4 5 6 7 8 pi1cof
 |-  ( ph -> G : V --> ( Base ` Q ) )
19 18 ffund
 |-  ( ph -> Fun G )
20 4 11 14 15 17 19 fliftval
 |-  ( ( ph /\ T e. U. V ) -> ( G ` [ T ] ( ~=ph ` J ) ) = [ ( F o. T ) ] ( ~=ph ` K ) )