Step |
Hyp |
Ref |
Expression |
1 |
|
pi1co.p |
|- P = ( J pi1 A ) |
2 |
|
pi1co.q |
|- Q = ( K pi1 B ) |
3 |
|
pi1co.v |
|- V = ( Base ` P ) |
4 |
|
pi1co.g |
|- G = ran ( g e. U. V |-> <. [ g ] ( ~=ph ` J ) , [ ( F o. g ) ] ( ~=ph ` K ) >. ) |
5 |
|
pi1co.j |
|- ( ph -> J e. ( TopOn ` X ) ) |
6 |
|
pi1co.f |
|- ( ph -> F e. ( J Cn K ) ) |
7 |
|
pi1co.a |
|- ( ph -> A e. X ) |
8 |
|
pi1co.b |
|- ( ph -> ( F ` A ) = B ) |
9 |
|
fvex |
|- ( ~=ph ` J ) e. _V |
10 |
|
ecexg |
|- ( ( ~=ph ` J ) e. _V -> [ g ] ( ~=ph ` J ) e. _V ) |
11 |
9 10
|
mp1i |
|- ( ( ph /\ g e. U. V ) -> [ g ] ( ~=ph ` J ) e. _V ) |
12 |
|
fvex |
|- ( ~=ph ` K ) e. _V |
13 |
|
ecexg |
|- ( ( ~=ph ` K ) e. _V -> [ ( F o. g ) ] ( ~=ph ` K ) e. _V ) |
14 |
12 13
|
mp1i |
|- ( ( ph /\ g e. U. V ) -> [ ( F o. g ) ] ( ~=ph ` K ) e. _V ) |
15 |
|
eceq1 |
|- ( g = T -> [ g ] ( ~=ph ` J ) = [ T ] ( ~=ph ` J ) ) |
16 |
|
coeq2 |
|- ( g = T -> ( F o. g ) = ( F o. T ) ) |
17 |
16
|
eceq1d |
|- ( g = T -> [ ( F o. g ) ] ( ~=ph ` K ) = [ ( F o. T ) ] ( ~=ph ` K ) ) |
18 |
1 2 3 4 5 6 7 8
|
pi1cof |
|- ( ph -> G : V --> ( Base ` Q ) ) |
19 |
18
|
ffund |
|- ( ph -> Fun G ) |
20 |
4 11 14 15 17 19
|
fliftval |
|- ( ( ph /\ T e. U. V ) -> ( G ` [ T ] ( ~=ph ` J ) ) = [ ( F o. T ) ] ( ~=ph ` K ) ) |