| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pi1co.p |  |-  P = ( J pi1 A ) | 
						
							| 2 |  | pi1co.q |  |-  Q = ( K pi1 B ) | 
						
							| 3 |  | pi1co.v |  |-  V = ( Base ` P ) | 
						
							| 4 |  | pi1co.g |  |-  G = ran ( g e. U. V |-> <. [ g ] ( ~=ph ` J ) , [ ( F o. g ) ] ( ~=ph ` K ) >. ) | 
						
							| 5 |  | pi1co.j |  |-  ( ph -> J e. ( TopOn ` X ) ) | 
						
							| 6 |  | pi1co.f |  |-  ( ph -> F e. ( J Cn K ) ) | 
						
							| 7 |  | pi1co.a |  |-  ( ph -> A e. X ) | 
						
							| 8 |  | pi1co.b |  |-  ( ph -> ( F ` A ) = B ) | 
						
							| 9 |  | fvex |  |-  ( ~=ph ` J ) e. _V | 
						
							| 10 |  | ecexg |  |-  ( ( ~=ph ` J ) e. _V -> [ g ] ( ~=ph ` J ) e. _V ) | 
						
							| 11 | 9 10 | mp1i |  |-  ( ( ph /\ g e. U. V ) -> [ g ] ( ~=ph ` J ) e. _V ) | 
						
							| 12 |  | eqid |  |-  ( Base ` Q ) = ( Base ` Q ) | 
						
							| 13 |  | cntop2 |  |-  ( F e. ( J Cn K ) -> K e. Top ) | 
						
							| 14 | 6 13 | syl |  |-  ( ph -> K e. Top ) | 
						
							| 15 |  | toptopon2 |  |-  ( K e. Top <-> K e. ( TopOn ` U. K ) ) | 
						
							| 16 | 14 15 | sylib |  |-  ( ph -> K e. ( TopOn ` U. K ) ) | 
						
							| 17 | 16 | adantr |  |-  ( ( ph /\ g e. U. V ) -> K e. ( TopOn ` U. K ) ) | 
						
							| 18 |  | cnf2 |  |-  ( ( J e. ( TopOn ` X ) /\ K e. ( TopOn ` U. K ) /\ F e. ( J Cn K ) ) -> F : X --> U. K ) | 
						
							| 19 | 5 16 6 18 | syl3anc |  |-  ( ph -> F : X --> U. K ) | 
						
							| 20 | 19 7 | ffvelcdmd |  |-  ( ph -> ( F ` A ) e. U. K ) | 
						
							| 21 | 8 20 | eqeltrrd |  |-  ( ph -> B e. U. K ) | 
						
							| 22 | 21 | adantr |  |-  ( ( ph /\ g e. U. V ) -> B e. U. K ) | 
						
							| 23 | 3 | a1i |  |-  ( ph -> V = ( Base ` P ) ) | 
						
							| 24 | 1 5 7 23 | pi1eluni |  |-  ( ph -> ( g e. U. V <-> ( g e. ( II Cn J ) /\ ( g ` 0 ) = A /\ ( g ` 1 ) = A ) ) ) | 
						
							| 25 | 24 | biimpa |  |-  ( ( ph /\ g e. U. V ) -> ( g e. ( II Cn J ) /\ ( g ` 0 ) = A /\ ( g ` 1 ) = A ) ) | 
						
							| 26 | 25 | simp1d |  |-  ( ( ph /\ g e. U. V ) -> g e. ( II Cn J ) ) | 
						
							| 27 | 6 | adantr |  |-  ( ( ph /\ g e. U. V ) -> F e. ( J Cn K ) ) | 
						
							| 28 |  | cnco |  |-  ( ( g e. ( II Cn J ) /\ F e. ( J Cn K ) ) -> ( F o. g ) e. ( II Cn K ) ) | 
						
							| 29 | 26 27 28 | syl2anc |  |-  ( ( ph /\ g e. U. V ) -> ( F o. g ) e. ( II Cn K ) ) | 
						
							| 30 |  | iitopon |  |-  II e. ( TopOn ` ( 0 [,] 1 ) ) | 
						
							| 31 |  | cnf2 |  |-  ( ( II e. ( TopOn ` ( 0 [,] 1 ) ) /\ J e. ( TopOn ` X ) /\ g e. ( II Cn J ) ) -> g : ( 0 [,] 1 ) --> X ) | 
						
							| 32 | 30 5 26 31 | mp3an2ani |  |-  ( ( ph /\ g e. U. V ) -> g : ( 0 [,] 1 ) --> X ) | 
						
							| 33 |  | 0elunit |  |-  0 e. ( 0 [,] 1 ) | 
						
							| 34 |  | fvco3 |  |-  ( ( g : ( 0 [,] 1 ) --> X /\ 0 e. ( 0 [,] 1 ) ) -> ( ( F o. g ) ` 0 ) = ( F ` ( g ` 0 ) ) ) | 
						
							| 35 | 32 33 34 | sylancl |  |-  ( ( ph /\ g e. U. V ) -> ( ( F o. g ) ` 0 ) = ( F ` ( g ` 0 ) ) ) | 
						
							| 36 | 25 | simp2d |  |-  ( ( ph /\ g e. U. V ) -> ( g ` 0 ) = A ) | 
						
							| 37 | 36 | fveq2d |  |-  ( ( ph /\ g e. U. V ) -> ( F ` ( g ` 0 ) ) = ( F ` A ) ) | 
						
							| 38 | 8 | adantr |  |-  ( ( ph /\ g e. U. V ) -> ( F ` A ) = B ) | 
						
							| 39 | 35 37 38 | 3eqtrd |  |-  ( ( ph /\ g e. U. V ) -> ( ( F o. g ) ` 0 ) = B ) | 
						
							| 40 |  | 1elunit |  |-  1 e. ( 0 [,] 1 ) | 
						
							| 41 |  | fvco3 |  |-  ( ( g : ( 0 [,] 1 ) --> X /\ 1 e. ( 0 [,] 1 ) ) -> ( ( F o. g ) ` 1 ) = ( F ` ( g ` 1 ) ) ) | 
						
							| 42 | 32 40 41 | sylancl |  |-  ( ( ph /\ g e. U. V ) -> ( ( F o. g ) ` 1 ) = ( F ` ( g ` 1 ) ) ) | 
						
							| 43 | 25 | simp3d |  |-  ( ( ph /\ g e. U. V ) -> ( g ` 1 ) = A ) | 
						
							| 44 | 43 | fveq2d |  |-  ( ( ph /\ g e. U. V ) -> ( F ` ( g ` 1 ) ) = ( F ` A ) ) | 
						
							| 45 | 42 44 38 | 3eqtrd |  |-  ( ( ph /\ g e. U. V ) -> ( ( F o. g ) ` 1 ) = B ) | 
						
							| 46 | 2 12 17 22 29 39 45 | elpi1i |  |-  ( ( ph /\ g e. U. V ) -> [ ( F o. g ) ] ( ~=ph ` K ) e. ( Base ` Q ) ) | 
						
							| 47 |  | eceq1 |  |-  ( g = h -> [ g ] ( ~=ph ` J ) = [ h ] ( ~=ph ` J ) ) | 
						
							| 48 |  | coeq2 |  |-  ( g = h -> ( F o. g ) = ( F o. h ) ) | 
						
							| 49 | 48 | eceq1d |  |-  ( g = h -> [ ( F o. g ) ] ( ~=ph ` K ) = [ ( F o. h ) ] ( ~=ph ` K ) ) | 
						
							| 50 |  | phtpcer |  |-  ( ~=ph ` K ) Er ( II Cn K ) | 
						
							| 51 | 50 | a1i |  |-  ( ( ph /\ ( g e. U. V /\ h e. U. V /\ [ g ] ( ~=ph ` J ) = [ h ] ( ~=ph ` J ) ) ) -> ( ~=ph ` K ) Er ( II Cn K ) ) | 
						
							| 52 |  | simpr3 |  |-  ( ( ph /\ ( g e. U. V /\ h e. U. V /\ [ g ] ( ~=ph ` J ) = [ h ] ( ~=ph ` J ) ) ) -> [ g ] ( ~=ph ` J ) = [ h ] ( ~=ph ` J ) ) | 
						
							| 53 |  | phtpcer |  |-  ( ~=ph ` J ) Er ( II Cn J ) | 
						
							| 54 | 53 | a1i |  |-  ( ( ph /\ ( g e. U. V /\ h e. U. V /\ [ g ] ( ~=ph ` J ) = [ h ] ( ~=ph ` J ) ) ) -> ( ~=ph ` J ) Er ( II Cn J ) ) | 
						
							| 55 |  | simpr1 |  |-  ( ( ph /\ ( g e. U. V /\ h e. U. V /\ [ g ] ( ~=ph ` J ) = [ h ] ( ~=ph ` J ) ) ) -> g e. U. V ) | 
						
							| 56 | 24 | adantr |  |-  ( ( ph /\ ( g e. U. V /\ h e. U. V /\ [ g ] ( ~=ph ` J ) = [ h ] ( ~=ph ` J ) ) ) -> ( g e. U. V <-> ( g e. ( II Cn J ) /\ ( g ` 0 ) = A /\ ( g ` 1 ) = A ) ) ) | 
						
							| 57 | 55 56 | mpbid |  |-  ( ( ph /\ ( g e. U. V /\ h e. U. V /\ [ g ] ( ~=ph ` J ) = [ h ] ( ~=ph ` J ) ) ) -> ( g e. ( II Cn J ) /\ ( g ` 0 ) = A /\ ( g ` 1 ) = A ) ) | 
						
							| 58 | 57 | simp1d |  |-  ( ( ph /\ ( g e. U. V /\ h e. U. V /\ [ g ] ( ~=ph ` J ) = [ h ] ( ~=ph ` J ) ) ) -> g e. ( II Cn J ) ) | 
						
							| 59 | 54 58 | erth |  |-  ( ( ph /\ ( g e. U. V /\ h e. U. V /\ [ g ] ( ~=ph ` J ) = [ h ] ( ~=ph ` J ) ) ) -> ( g ( ~=ph ` J ) h <-> [ g ] ( ~=ph ` J ) = [ h ] ( ~=ph ` J ) ) ) | 
						
							| 60 | 52 59 | mpbird |  |-  ( ( ph /\ ( g e. U. V /\ h e. U. V /\ [ g ] ( ~=ph ` J ) = [ h ] ( ~=ph ` J ) ) ) -> g ( ~=ph ` J ) h ) | 
						
							| 61 | 6 | adantr |  |-  ( ( ph /\ ( g e. U. V /\ h e. U. V /\ [ g ] ( ~=ph ` J ) = [ h ] ( ~=ph ` J ) ) ) -> F e. ( J Cn K ) ) | 
						
							| 62 | 60 61 | phtpcco2 |  |-  ( ( ph /\ ( g e. U. V /\ h e. U. V /\ [ g ] ( ~=ph ` J ) = [ h ] ( ~=ph ` J ) ) ) -> ( F o. g ) ( ~=ph ` K ) ( F o. h ) ) | 
						
							| 63 | 51 62 | erthi |  |-  ( ( ph /\ ( g e. U. V /\ h e. U. V /\ [ g ] ( ~=ph ` J ) = [ h ] ( ~=ph ` J ) ) ) -> [ ( F o. g ) ] ( ~=ph ` K ) = [ ( F o. h ) ] ( ~=ph ` K ) ) | 
						
							| 64 | 4 11 46 47 49 63 | fliftfund |  |-  ( ph -> Fun G ) | 
						
							| 65 | 4 11 46 | fliftf |  |-  ( ph -> ( Fun G <-> G : ran ( g e. U. V |-> [ g ] ( ~=ph ` J ) ) --> ( Base ` Q ) ) ) | 
						
							| 66 | 64 65 | mpbid |  |-  ( ph -> G : ran ( g e. U. V |-> [ g ] ( ~=ph ` J ) ) --> ( Base ` Q ) ) | 
						
							| 67 | 1 5 7 23 | pi1bas2 |  |-  ( ph -> V = ( U. V /. ( ~=ph ` J ) ) ) | 
						
							| 68 |  | df-qs |  |-  ( U. V /. ( ~=ph ` J ) ) = { s | E. g e. U. V s = [ g ] ( ~=ph ` J ) } | 
						
							| 69 |  | eqid |  |-  ( g e. U. V |-> [ g ] ( ~=ph ` J ) ) = ( g e. U. V |-> [ g ] ( ~=ph ` J ) ) | 
						
							| 70 | 69 | rnmpt |  |-  ran ( g e. U. V |-> [ g ] ( ~=ph ` J ) ) = { s | E. g e. U. V s = [ g ] ( ~=ph ` J ) } | 
						
							| 71 | 68 70 | eqtr4i |  |-  ( U. V /. ( ~=ph ` J ) ) = ran ( g e. U. V |-> [ g ] ( ~=ph ` J ) ) | 
						
							| 72 | 67 71 | eqtrdi |  |-  ( ph -> V = ran ( g e. U. V |-> [ g ] ( ~=ph ` J ) ) ) | 
						
							| 73 | 72 | feq2d |  |-  ( ph -> ( G : V --> ( Base ` Q ) <-> G : ran ( g e. U. V |-> [ g ] ( ~=ph ` J ) ) --> ( Base ` Q ) ) ) | 
						
							| 74 | 66 73 | mpbird |  |-  ( ph -> G : V --> ( Base ` Q ) ) |