Metamath Proof Explorer


Theorem pi1xfrcnv

Description: Given a path F between two basepoints, there is an induced group homomorphism on the fundamental groups. (Contributed by Mario Carneiro, 12-Feb-2015) (Proof shortened by Mario Carneiro, 23-Dec-2016)

Ref Expression
Hypotheses pi1xfr.p P = J π 1 F 0
pi1xfr.q Q = J π 1 F 1
pi1xfr.b B = Base P
pi1xfr.g G = ran g B g ph J I * 𝑝 J g * 𝑝 J F ph J
pi1xfr.j φ J TopOn X
pi1xfr.f φ F II Cn J
pi1xfr.i I = x 0 1 F 1 x
pi1xfrcnv.h H = ran h Base Q h ph J F * 𝑝 J h * 𝑝 J I ph J
Assertion pi1xfrcnv φ G -1 = H G -1 Q GrpHom P

Proof

Step Hyp Ref Expression
1 pi1xfr.p P = J π 1 F 0
2 pi1xfr.q Q = J π 1 F 1
3 pi1xfr.b B = Base P
4 pi1xfr.g G = ran g B g ph J I * 𝑝 J g * 𝑝 J F ph J
5 pi1xfr.j φ J TopOn X
6 pi1xfr.f φ F II Cn J
7 pi1xfr.i I = x 0 1 F 1 x
8 pi1xfrcnv.h H = ran h Base Q h ph J F * 𝑝 J h * 𝑝 J I ph J
9 1 2 3 4 5 6 7 8 pi1xfrcnvlem φ G -1 H
10 fvex ph J V
11 ecexg ph J V h ph J V
12 10 11 mp1i φ h Base Q h ph J V
13 ecexg ph J V F * 𝑝 J h * 𝑝 J I ph J V
14 10 13 mp1i φ h Base Q F * 𝑝 J h * 𝑝 J I ph J V
15 8 12 14 fliftrel φ H V × V
16 df-rel Rel H H V × V
17 15 16 sylibr φ Rel H
18 dfrel2 Rel H H -1 -1 = H
19 17 18 sylib φ H -1 -1 = H
20 0elunit 0 0 1
21 oveq2 x = 0 1 x = 1 0
22 1m0e1 1 0 = 1
23 21 22 eqtrdi x = 0 1 x = 1
24 23 fveq2d x = 0 F 1 x = F 1
25 fvex F 1 V
26 24 7 25 fvmpt 0 0 1 I 0 = F 1
27 20 26 ax-mp I 0 = F 1
28 27 oveq2i J π 1 I 0 = J π 1 F 1
29 2 28 eqtr4i Q = J π 1 I 0
30 1elunit 1 0 1
31 oveq2 x = 1 1 x = 1 1
32 31 fveq2d x = 1 F 1 x = F 1 1
33 1m1e0 1 1 = 0
34 33 fveq2i F 1 1 = F 0
35 32 34 eqtrdi x = 1 F 1 x = F 0
36 fvex F 0 V
37 35 7 36 fvmpt 1 0 1 I 1 = F 0
38 30 37 ax-mp I 1 = F 0
39 38 oveq2i J π 1 I 1 = J π 1 F 0
40 1 39 eqtr4i P = J π 1 I 1
41 eqid Base Q = Base Q
42 eqid ran h Base Q h ph J z 0 1 I 1 z * 𝑝 J h * 𝑝 J I ph J = ran h Base Q h ph J z 0 1 I 1 z * 𝑝 J h * 𝑝 J I ph J
43 7 pcorevcl F II Cn J I II Cn J I 0 = F 1 I 1 = F 0
44 6 43 syl φ I II Cn J I 0 = F 1 I 1 = F 0
45 44 simp1d φ I II Cn J
46 oveq2 z = y 1 z = 1 y
47 46 fveq2d z = y I 1 z = I 1 y
48 47 cbvmptv z 0 1 I 1 z = y 0 1 I 1 y
49 eqid ran g Base P g ph J I * 𝑝 J g * 𝑝 J z 0 1 I 1 z ph J = ran g Base P g ph J I * 𝑝 J g * 𝑝 J z 0 1 I 1 z ph J
50 29 40 41 42 5 45 48 49 pi1xfrcnvlem φ ran h Base Q h ph J z 0 1 I 1 z * 𝑝 J h * 𝑝 J I ph J -1 ran g Base P g ph J I * 𝑝 J g * 𝑝 J z 0 1 I 1 z ph J
51 iitopon II TopOn 0 1
52 cnf2 II TopOn 0 1 J TopOn X F II Cn J F : 0 1 X
53 51 5 6 52 mp3an2i φ F : 0 1 X
54 53 feqmptd φ F = z 0 1 F z
55 iirev z 0 1 1 z 0 1
56 oveq2 x = 1 z 1 x = 1 1 z
57 56 fveq2d x = 1 z F 1 x = F 1 1 z
58 fvex F 1 1 z V
59 57 7 58 fvmpt 1 z 0 1 I 1 z = F 1 1 z
60 55 59 syl z 0 1 I 1 z = F 1 1 z
61 ax-1cn 1
62 unitssre 0 1
63 62 sseli z 0 1 z
64 63 recnd z 0 1 z
65 nncan 1 z 1 1 z = z
66 61 64 65 sylancr z 0 1 1 1 z = z
67 66 fveq2d z 0 1 F 1 1 z = F z
68 60 67 eqtrd z 0 1 I 1 z = F z
69 68 mpteq2ia z 0 1 I 1 z = z 0 1 F z
70 54 69 eqtr4di φ F = z 0 1 I 1 z
71 70 oveq1d φ F * 𝑝 J h * 𝑝 J I = z 0 1 I 1 z * 𝑝 J h * 𝑝 J I
72 71 eceq1d φ F * 𝑝 J h * 𝑝 J I ph J = z 0 1 I 1 z * 𝑝 J h * 𝑝 J I ph J
73 72 opeq2d φ h ph J F * 𝑝 J h * 𝑝 J I ph J = h ph J z 0 1 I 1 z * 𝑝 J h * 𝑝 J I ph J
74 73 mpteq2dv φ h Base Q h ph J F * 𝑝 J h * 𝑝 J I ph J = h Base Q h ph J z 0 1 I 1 z * 𝑝 J h * 𝑝 J I ph J
75 74 rneqd φ ran h Base Q h ph J F * 𝑝 J h * 𝑝 J I ph J = ran h Base Q h ph J z 0 1 I 1 z * 𝑝 J h * 𝑝 J I ph J
76 8 75 eqtrid φ H = ran h Base Q h ph J z 0 1 I 1 z * 𝑝 J h * 𝑝 J I ph J
77 76 cnveqd φ H -1 = ran h Base Q h ph J z 0 1 I 1 z * 𝑝 J h * 𝑝 J I ph J -1
78 3 a1i φ B = Base P
79 78 unieqd φ B = Base P
80 70 oveq2d φ g * 𝑝 J F = g * 𝑝 J z 0 1 I 1 z
81 80 oveq2d φ I * 𝑝 J g * 𝑝 J F = I * 𝑝 J g * 𝑝 J z 0 1 I 1 z
82 81 eceq1d φ I * 𝑝 J g * 𝑝 J F ph J = I * 𝑝 J g * 𝑝 J z 0 1 I 1 z ph J
83 82 opeq2d φ g ph J I * 𝑝 J g * 𝑝 J F ph J = g ph J I * 𝑝 J g * 𝑝 J z 0 1 I 1 z ph J
84 79 83 mpteq12dv φ g B g ph J I * 𝑝 J g * 𝑝 J F ph J = g Base P g ph J I * 𝑝 J g * 𝑝 J z 0 1 I 1 z ph J
85 84 rneqd φ ran g B g ph J I * 𝑝 J g * 𝑝 J F ph J = ran g Base P g ph J I * 𝑝 J g * 𝑝 J z 0 1 I 1 z ph J
86 4 85 eqtrid φ G = ran g Base P g ph J I * 𝑝 J g * 𝑝 J z 0 1 I 1 z ph J
87 50 77 86 3sstr4d φ H -1 G
88 cnvss H -1 G H -1 -1 G -1
89 87 88 syl φ H -1 -1 G -1
90 19 89 eqsstrrd φ H G -1
91 9 90 eqssd φ G -1 = H
92 91 76 eqtrd φ G -1 = ran h Base Q h ph J z 0 1 I 1 z * 𝑝 J h * 𝑝 J I ph J
93 29 40 41 42 5 45 48 pi1xfr φ ran h Base Q h ph J z 0 1 I 1 z * 𝑝 J h * 𝑝 J I ph J Q GrpHom P
94 92 93 eqeltrd φ G -1 Q GrpHom P
95 91 94 jca φ G -1 = H G -1 Q GrpHom P