| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sconnpht2.1 | ⊢ ( 𝜑  →  𝐽  ∈  SConn ) | 
						
							| 2 |  | sconnpht2.2 | ⊢ ( 𝜑  →  𝐹  ∈  ( II  Cn  𝐽 ) ) | 
						
							| 3 |  | sconnpht2.3 | ⊢ ( 𝜑  →  𝐺  ∈  ( II  Cn  𝐽 ) ) | 
						
							| 4 |  | sconnpht2.4 | ⊢ ( 𝜑  →  ( 𝐹 ‘ 0 )  =  ( 𝐺 ‘ 0 ) ) | 
						
							| 5 |  | sconnpht2.5 | ⊢ ( 𝜑  →  ( 𝐹 ‘ 1 )  =  ( 𝐺 ‘ 1 ) ) | 
						
							| 6 |  | eqid | ⊢ ( 𝑥  ∈  ( 0 [,] 1 )  ↦  ( 𝐺 ‘ ( 1  −  𝑥 ) ) )  =  ( 𝑥  ∈  ( 0 [,] 1 )  ↦  ( 𝐺 ‘ ( 1  −  𝑥 ) ) ) | 
						
							| 7 | 6 | pcorevcl | ⊢ ( 𝐺  ∈  ( II  Cn  𝐽 )  →  ( ( 𝑥  ∈  ( 0 [,] 1 )  ↦  ( 𝐺 ‘ ( 1  −  𝑥 ) ) )  ∈  ( II  Cn  𝐽 )  ∧  ( ( 𝑥  ∈  ( 0 [,] 1 )  ↦  ( 𝐺 ‘ ( 1  −  𝑥 ) ) ) ‘ 0 )  =  ( 𝐺 ‘ 1 )  ∧  ( ( 𝑥  ∈  ( 0 [,] 1 )  ↦  ( 𝐺 ‘ ( 1  −  𝑥 ) ) ) ‘ 1 )  =  ( 𝐺 ‘ 0 ) ) ) | 
						
							| 8 | 3 7 | syl | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ( 0 [,] 1 )  ↦  ( 𝐺 ‘ ( 1  −  𝑥 ) ) )  ∈  ( II  Cn  𝐽 )  ∧  ( ( 𝑥  ∈  ( 0 [,] 1 )  ↦  ( 𝐺 ‘ ( 1  −  𝑥 ) ) ) ‘ 0 )  =  ( 𝐺 ‘ 1 )  ∧  ( ( 𝑥  ∈  ( 0 [,] 1 )  ↦  ( 𝐺 ‘ ( 1  −  𝑥 ) ) ) ‘ 1 )  =  ( 𝐺 ‘ 0 ) ) ) | 
						
							| 9 | 8 | simp1d | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 0 [,] 1 )  ↦  ( 𝐺 ‘ ( 1  −  𝑥 ) ) )  ∈  ( II  Cn  𝐽 ) ) | 
						
							| 10 | 8 | simp2d | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ( 0 [,] 1 )  ↦  ( 𝐺 ‘ ( 1  −  𝑥 ) ) ) ‘ 0 )  =  ( 𝐺 ‘ 1 ) ) | 
						
							| 11 | 5 10 | eqtr4d | ⊢ ( 𝜑  →  ( 𝐹 ‘ 1 )  =  ( ( 𝑥  ∈  ( 0 [,] 1 )  ↦  ( 𝐺 ‘ ( 1  −  𝑥 ) ) ) ‘ 0 ) ) | 
						
							| 12 | 2 9 11 | pcocn | ⊢ ( 𝜑  →  ( 𝐹 ( *𝑝 ‘ 𝐽 ) ( 𝑥  ∈  ( 0 [,] 1 )  ↦  ( 𝐺 ‘ ( 1  −  𝑥 ) ) ) )  ∈  ( II  Cn  𝐽 ) ) | 
						
							| 13 | 2 9 | pco0 | ⊢ ( 𝜑  →  ( ( 𝐹 ( *𝑝 ‘ 𝐽 ) ( 𝑥  ∈  ( 0 [,] 1 )  ↦  ( 𝐺 ‘ ( 1  −  𝑥 ) ) ) ) ‘ 0 )  =  ( 𝐹 ‘ 0 ) ) | 
						
							| 14 | 2 9 | pco1 | ⊢ ( 𝜑  →  ( ( 𝐹 ( *𝑝 ‘ 𝐽 ) ( 𝑥  ∈  ( 0 [,] 1 )  ↦  ( 𝐺 ‘ ( 1  −  𝑥 ) ) ) ) ‘ 1 )  =  ( ( 𝑥  ∈  ( 0 [,] 1 )  ↦  ( 𝐺 ‘ ( 1  −  𝑥 ) ) ) ‘ 1 ) ) | 
						
							| 15 | 8 | simp3d | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ( 0 [,] 1 )  ↦  ( 𝐺 ‘ ( 1  −  𝑥 ) ) ) ‘ 1 )  =  ( 𝐺 ‘ 0 ) ) | 
						
							| 16 | 4 15 | eqtr4d | ⊢ ( 𝜑  →  ( 𝐹 ‘ 0 )  =  ( ( 𝑥  ∈  ( 0 [,] 1 )  ↦  ( 𝐺 ‘ ( 1  −  𝑥 ) ) ) ‘ 1 ) ) | 
						
							| 17 | 14 16 | eqtr4d | ⊢ ( 𝜑  →  ( ( 𝐹 ( *𝑝 ‘ 𝐽 ) ( 𝑥  ∈  ( 0 [,] 1 )  ↦  ( 𝐺 ‘ ( 1  −  𝑥 ) ) ) ) ‘ 1 )  =  ( 𝐹 ‘ 0 ) ) | 
						
							| 18 | 13 17 | eqtr4d | ⊢ ( 𝜑  →  ( ( 𝐹 ( *𝑝 ‘ 𝐽 ) ( 𝑥  ∈  ( 0 [,] 1 )  ↦  ( 𝐺 ‘ ( 1  −  𝑥 ) ) ) ) ‘ 0 )  =  ( ( 𝐹 ( *𝑝 ‘ 𝐽 ) ( 𝑥  ∈  ( 0 [,] 1 )  ↦  ( 𝐺 ‘ ( 1  −  𝑥 ) ) ) ) ‘ 1 ) ) | 
						
							| 19 |  | sconnpht | ⊢ ( ( 𝐽  ∈  SConn  ∧  ( 𝐹 ( *𝑝 ‘ 𝐽 ) ( 𝑥  ∈  ( 0 [,] 1 )  ↦  ( 𝐺 ‘ ( 1  −  𝑥 ) ) ) )  ∈  ( II  Cn  𝐽 )  ∧  ( ( 𝐹 ( *𝑝 ‘ 𝐽 ) ( 𝑥  ∈  ( 0 [,] 1 )  ↦  ( 𝐺 ‘ ( 1  −  𝑥 ) ) ) ) ‘ 0 )  =  ( ( 𝐹 ( *𝑝 ‘ 𝐽 ) ( 𝑥  ∈  ( 0 [,] 1 )  ↦  ( 𝐺 ‘ ( 1  −  𝑥 ) ) ) ) ‘ 1 ) )  →  ( 𝐹 ( *𝑝 ‘ 𝐽 ) ( 𝑥  ∈  ( 0 [,] 1 )  ↦  ( 𝐺 ‘ ( 1  −  𝑥 ) ) ) ) (  ≃ph ‘ 𝐽 ) ( ( 0 [,] 1 )  ×  { ( ( 𝐹 ( *𝑝 ‘ 𝐽 ) ( 𝑥  ∈  ( 0 [,] 1 )  ↦  ( 𝐺 ‘ ( 1  −  𝑥 ) ) ) ) ‘ 0 ) } ) ) | 
						
							| 20 | 1 12 18 19 | syl3anc | ⊢ ( 𝜑  →  ( 𝐹 ( *𝑝 ‘ 𝐽 ) ( 𝑥  ∈  ( 0 [,] 1 )  ↦  ( 𝐺 ‘ ( 1  −  𝑥 ) ) ) ) (  ≃ph ‘ 𝐽 ) ( ( 0 [,] 1 )  ×  { ( ( 𝐹 ( *𝑝 ‘ 𝐽 ) ( 𝑥  ∈  ( 0 [,] 1 )  ↦  ( 𝐺 ‘ ( 1  −  𝑥 ) ) ) ) ‘ 0 ) } ) ) | 
						
							| 21 | 13 | sneqd | ⊢ ( 𝜑  →  { ( ( 𝐹 ( *𝑝 ‘ 𝐽 ) ( 𝑥  ∈  ( 0 [,] 1 )  ↦  ( 𝐺 ‘ ( 1  −  𝑥 ) ) ) ) ‘ 0 ) }  =  { ( 𝐹 ‘ 0 ) } ) | 
						
							| 22 | 21 | xpeq2d | ⊢ ( 𝜑  →  ( ( 0 [,] 1 )  ×  { ( ( 𝐹 ( *𝑝 ‘ 𝐽 ) ( 𝑥  ∈  ( 0 [,] 1 )  ↦  ( 𝐺 ‘ ( 1  −  𝑥 ) ) ) ) ‘ 0 ) } )  =  ( ( 0 [,] 1 )  ×  { ( 𝐹 ‘ 0 ) } ) ) | 
						
							| 23 | 20 22 | breqtrd | ⊢ ( 𝜑  →  ( 𝐹 ( *𝑝 ‘ 𝐽 ) ( 𝑥  ∈  ( 0 [,] 1 )  ↦  ( 𝐺 ‘ ( 1  −  𝑥 ) ) ) ) (  ≃ph ‘ 𝐽 ) ( ( 0 [,] 1 )  ×  { ( 𝐹 ‘ 0 ) } ) ) | 
						
							| 24 |  | eqid | ⊢ ( ( 0 [,] 1 )  ×  { ( 𝐹 ‘ 0 ) } )  =  ( ( 0 [,] 1 )  ×  { ( 𝐹 ‘ 0 ) } ) | 
						
							| 25 | 6 24 2 3 4 5 | pcophtb | ⊢ ( 𝜑  →  ( ( 𝐹 ( *𝑝 ‘ 𝐽 ) ( 𝑥  ∈  ( 0 [,] 1 )  ↦  ( 𝐺 ‘ ( 1  −  𝑥 ) ) ) ) (  ≃ph ‘ 𝐽 ) ( ( 0 [,] 1 )  ×  { ( 𝐹 ‘ 0 ) } )  ↔  𝐹 (  ≃ph ‘ 𝐽 ) 𝐺 ) ) | 
						
							| 26 | 23 25 | mpbid | ⊢ ( 𝜑  →  𝐹 (  ≃ph ‘ 𝐽 ) 𝐺 ) |