Metamath Proof Explorer


Theorem sconnpht2

Description: Any two paths in a simply connected space with the same start and end point are path-homotopic. (Contributed by Mario Carneiro, 12-Feb-2015)

Ref Expression
Hypotheses sconnpht2.1 φ J SConn
sconnpht2.2 φ F II Cn J
sconnpht2.3 φ G II Cn J
sconnpht2.4 φ F 0 = G 0
sconnpht2.5 φ F 1 = G 1
Assertion sconnpht2 φ F ph J G

Proof

Step Hyp Ref Expression
1 sconnpht2.1 φ J SConn
2 sconnpht2.2 φ F II Cn J
3 sconnpht2.3 φ G II Cn J
4 sconnpht2.4 φ F 0 = G 0
5 sconnpht2.5 φ F 1 = G 1
6 eqid x 0 1 G 1 x = x 0 1 G 1 x
7 6 pcorevcl G II Cn J x 0 1 G 1 x II Cn J x 0 1 G 1 x 0 = G 1 x 0 1 G 1 x 1 = G 0
8 3 7 syl φ x 0 1 G 1 x II Cn J x 0 1 G 1 x 0 = G 1 x 0 1 G 1 x 1 = G 0
9 8 simp1d φ x 0 1 G 1 x II Cn J
10 8 simp2d φ x 0 1 G 1 x 0 = G 1
11 5 10 eqtr4d φ F 1 = x 0 1 G 1 x 0
12 2 9 11 pcocn φ F * 𝑝 J x 0 1 G 1 x II Cn J
13 2 9 pco0 φ F * 𝑝 J x 0 1 G 1 x 0 = F 0
14 2 9 pco1 φ F * 𝑝 J x 0 1 G 1 x 1 = x 0 1 G 1 x 1
15 8 simp3d φ x 0 1 G 1 x 1 = G 0
16 4 15 eqtr4d φ F 0 = x 0 1 G 1 x 1
17 14 16 eqtr4d φ F * 𝑝 J x 0 1 G 1 x 1 = F 0
18 13 17 eqtr4d φ F * 𝑝 J x 0 1 G 1 x 0 = F * 𝑝 J x 0 1 G 1 x 1
19 sconnpht J SConn F * 𝑝 J x 0 1 G 1 x II Cn J F * 𝑝 J x 0 1 G 1 x 0 = F * 𝑝 J x 0 1 G 1 x 1 F * 𝑝 J x 0 1 G 1 x ph J 0 1 × F * 𝑝 J x 0 1 G 1 x 0
20 1 12 18 19 syl3anc φ F * 𝑝 J x 0 1 G 1 x ph J 0 1 × F * 𝑝 J x 0 1 G 1 x 0
21 13 sneqd φ F * 𝑝 J x 0 1 G 1 x 0 = F 0
22 21 xpeq2d φ 0 1 × F * 𝑝 J x 0 1 G 1 x 0 = 0 1 × F 0
23 20 22 breqtrd φ F * 𝑝 J x 0 1 G 1 x ph J 0 1 × F 0
24 eqid 0 1 × F 0 = 0 1 × F 0
25 6 24 2 3 4 5 pcophtb φ F * 𝑝 J x 0 1 G 1 x ph J 0 1 × F 0 F ph J G
26 23 25 mpbid φ F ph J G