Step |
Hyp |
Ref |
Expression |
1 |
|
txsconn.1 |
⊢ ( 𝜑 → 𝑅 ∈ Top ) |
2 |
|
txsconn.2 |
⊢ ( 𝜑 → 𝑆 ∈ Top ) |
3 |
|
txsconn.3 |
⊢ ( 𝜑 → 𝐹 ∈ ( II Cn ( 𝑅 ×t 𝑆 ) ) ) |
4 |
|
txsconn.5 |
⊢ 𝐴 = ( ( 1st ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ∘ 𝐹 ) |
5 |
|
txsconn.6 |
⊢ 𝐵 = ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ∘ 𝐹 ) |
6 |
|
txsconn.7 |
⊢ ( 𝜑 → 𝐺 ∈ ( 𝐴 ( PHtpy ‘ 𝑅 ) ( ( 0 [,] 1 ) × { ( 𝐴 ‘ 0 ) } ) ) ) |
7 |
|
txsconn.8 |
⊢ ( 𝜑 → 𝐻 ∈ ( 𝐵 ( PHtpy ‘ 𝑆 ) ( ( 0 [,] 1 ) × { ( 𝐵 ‘ 0 ) } ) ) ) |
8 |
|
fconstmpt |
⊢ ( ( 0 [,] 1 ) × { ( 𝐹 ‘ 0 ) } ) = ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( 𝐹 ‘ 0 ) ) |
9 |
|
iitopon |
⊢ II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) |
10 |
9
|
a1i |
⊢ ( 𝜑 → II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) ) |
11 |
|
eqid |
⊢ ∪ 𝑅 = ∪ 𝑅 |
12 |
11
|
toptopon |
⊢ ( 𝑅 ∈ Top ↔ 𝑅 ∈ ( TopOn ‘ ∪ 𝑅 ) ) |
13 |
1 12
|
sylib |
⊢ ( 𝜑 → 𝑅 ∈ ( TopOn ‘ ∪ 𝑅 ) ) |
14 |
|
eqid |
⊢ ∪ 𝑆 = ∪ 𝑆 |
15 |
14
|
toptopon |
⊢ ( 𝑆 ∈ Top ↔ 𝑆 ∈ ( TopOn ‘ ∪ 𝑆 ) ) |
16 |
2 15
|
sylib |
⊢ ( 𝜑 → 𝑆 ∈ ( TopOn ‘ ∪ 𝑆 ) ) |
17 |
|
txtopon |
⊢ ( ( 𝑅 ∈ ( TopOn ‘ ∪ 𝑅 ) ∧ 𝑆 ∈ ( TopOn ‘ ∪ 𝑆 ) ) → ( 𝑅 ×t 𝑆 ) ∈ ( TopOn ‘ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) |
18 |
13 16 17
|
syl2anc |
⊢ ( 𝜑 → ( 𝑅 ×t 𝑆 ) ∈ ( TopOn ‘ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) |
19 |
|
cnf2 |
⊢ ( ( II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) ∧ ( 𝑅 ×t 𝑆 ) ∈ ( TopOn ‘ ( ∪ 𝑅 × ∪ 𝑆 ) ) ∧ 𝐹 ∈ ( II Cn ( 𝑅 ×t 𝑆 ) ) ) → 𝐹 : ( 0 [,] 1 ) ⟶ ( ∪ 𝑅 × ∪ 𝑆 ) ) |
20 |
10 18 3 19
|
syl3anc |
⊢ ( 𝜑 → 𝐹 : ( 0 [,] 1 ) ⟶ ( ∪ 𝑅 × ∪ 𝑆 ) ) |
21 |
|
0elunit |
⊢ 0 ∈ ( 0 [,] 1 ) |
22 |
|
ffvelrn |
⊢ ( ( 𝐹 : ( 0 [,] 1 ) ⟶ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 0 ∈ ( 0 [,] 1 ) ) → ( 𝐹 ‘ 0 ) ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) |
23 |
20 21 22
|
sylancl |
⊢ ( 𝜑 → ( 𝐹 ‘ 0 ) ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) |
24 |
10 18 23
|
cnmptc |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( 𝐹 ‘ 0 ) ) ∈ ( II Cn ( 𝑅 ×t 𝑆 ) ) ) |
25 |
8 24
|
eqeltrid |
⊢ ( 𝜑 → ( ( 0 [,] 1 ) × { ( 𝐹 ‘ 0 ) } ) ∈ ( II Cn ( 𝑅 ×t 𝑆 ) ) ) |
26 |
|
tx1cn |
⊢ ( ( 𝑅 ∈ ( TopOn ‘ ∪ 𝑅 ) ∧ 𝑆 ∈ ( TopOn ‘ ∪ 𝑆 ) ) → ( 1st ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ∈ ( ( 𝑅 ×t 𝑆 ) Cn 𝑅 ) ) |
27 |
13 16 26
|
syl2anc |
⊢ ( 𝜑 → ( 1st ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ∈ ( ( 𝑅 ×t 𝑆 ) Cn 𝑅 ) ) |
28 |
|
cnco |
⊢ ( ( 𝐹 ∈ ( II Cn ( 𝑅 ×t 𝑆 ) ) ∧ ( 1st ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ∈ ( ( 𝑅 ×t 𝑆 ) Cn 𝑅 ) ) → ( ( 1st ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ∘ 𝐹 ) ∈ ( II Cn 𝑅 ) ) |
29 |
3 27 28
|
syl2anc |
⊢ ( 𝜑 → ( ( 1st ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ∘ 𝐹 ) ∈ ( II Cn 𝑅 ) ) |
30 |
4 29
|
eqeltrid |
⊢ ( 𝜑 → 𝐴 ∈ ( II Cn 𝑅 ) ) |
31 |
|
fconstmpt |
⊢ ( ( 0 [,] 1 ) × { ( 𝐴 ‘ 0 ) } ) = ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( 𝐴 ‘ 0 ) ) |
32 |
|
iiuni |
⊢ ( 0 [,] 1 ) = ∪ II |
33 |
32 11
|
cnf |
⊢ ( 𝐴 ∈ ( II Cn 𝑅 ) → 𝐴 : ( 0 [,] 1 ) ⟶ ∪ 𝑅 ) |
34 |
30 33
|
syl |
⊢ ( 𝜑 → 𝐴 : ( 0 [,] 1 ) ⟶ ∪ 𝑅 ) |
35 |
|
ffvelrn |
⊢ ( ( 𝐴 : ( 0 [,] 1 ) ⟶ ∪ 𝑅 ∧ 0 ∈ ( 0 [,] 1 ) ) → ( 𝐴 ‘ 0 ) ∈ ∪ 𝑅 ) |
36 |
34 21 35
|
sylancl |
⊢ ( 𝜑 → ( 𝐴 ‘ 0 ) ∈ ∪ 𝑅 ) |
37 |
10 13 36
|
cnmptc |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( 𝐴 ‘ 0 ) ) ∈ ( II Cn 𝑅 ) ) |
38 |
31 37
|
eqeltrid |
⊢ ( 𝜑 → ( ( 0 [,] 1 ) × { ( 𝐴 ‘ 0 ) } ) ∈ ( II Cn 𝑅 ) ) |
39 |
30 38
|
phtpycn |
⊢ ( 𝜑 → ( 𝐴 ( PHtpy ‘ 𝑅 ) ( ( 0 [,] 1 ) × { ( 𝐴 ‘ 0 ) } ) ) ⊆ ( ( II ×t II ) Cn 𝑅 ) ) |
40 |
39 6
|
sseldd |
⊢ ( 𝜑 → 𝐺 ∈ ( ( II ×t II ) Cn 𝑅 ) ) |
41 |
|
iitop |
⊢ II ∈ Top |
42 |
41 41 32 32
|
txunii |
⊢ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) = ∪ ( II ×t II ) |
43 |
42 11
|
cnf |
⊢ ( 𝐺 ∈ ( ( II ×t II ) Cn 𝑅 ) → 𝐺 : ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ⟶ ∪ 𝑅 ) |
44 |
|
ffn |
⊢ ( 𝐺 : ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ⟶ ∪ 𝑅 → 𝐺 Fn ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) |
45 |
40 43 44
|
3syl |
⊢ ( 𝜑 → 𝐺 Fn ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) |
46 |
|
fnov |
⊢ ( 𝐺 Fn ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ↔ 𝐺 = ( 𝑥 ∈ ( 0 [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ ( 𝑥 𝐺 𝑦 ) ) ) |
47 |
45 46
|
sylib |
⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ ( 0 [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ ( 𝑥 𝐺 𝑦 ) ) ) |
48 |
47 40
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 0 [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ ( 𝑥 𝐺 𝑦 ) ) ∈ ( ( II ×t II ) Cn 𝑅 ) ) |
49 |
|
tx2cn |
⊢ ( ( 𝑅 ∈ ( TopOn ‘ ∪ 𝑅 ) ∧ 𝑆 ∈ ( TopOn ‘ ∪ 𝑆 ) ) → ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ∈ ( ( 𝑅 ×t 𝑆 ) Cn 𝑆 ) ) |
50 |
13 16 49
|
syl2anc |
⊢ ( 𝜑 → ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ∈ ( ( 𝑅 ×t 𝑆 ) Cn 𝑆 ) ) |
51 |
|
cnco |
⊢ ( ( 𝐹 ∈ ( II Cn ( 𝑅 ×t 𝑆 ) ) ∧ ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ∈ ( ( 𝑅 ×t 𝑆 ) Cn 𝑆 ) ) → ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ∘ 𝐹 ) ∈ ( II Cn 𝑆 ) ) |
52 |
3 50 51
|
syl2anc |
⊢ ( 𝜑 → ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ∘ 𝐹 ) ∈ ( II Cn 𝑆 ) ) |
53 |
5 52
|
eqeltrid |
⊢ ( 𝜑 → 𝐵 ∈ ( II Cn 𝑆 ) ) |
54 |
|
fconstmpt |
⊢ ( ( 0 [,] 1 ) × { ( 𝐵 ‘ 0 ) } ) = ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( 𝐵 ‘ 0 ) ) |
55 |
32 14
|
cnf |
⊢ ( 𝐵 ∈ ( II Cn 𝑆 ) → 𝐵 : ( 0 [,] 1 ) ⟶ ∪ 𝑆 ) |
56 |
53 55
|
syl |
⊢ ( 𝜑 → 𝐵 : ( 0 [,] 1 ) ⟶ ∪ 𝑆 ) |
57 |
|
ffvelrn |
⊢ ( ( 𝐵 : ( 0 [,] 1 ) ⟶ ∪ 𝑆 ∧ 0 ∈ ( 0 [,] 1 ) ) → ( 𝐵 ‘ 0 ) ∈ ∪ 𝑆 ) |
58 |
56 21 57
|
sylancl |
⊢ ( 𝜑 → ( 𝐵 ‘ 0 ) ∈ ∪ 𝑆 ) |
59 |
10 16 58
|
cnmptc |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( 𝐵 ‘ 0 ) ) ∈ ( II Cn 𝑆 ) ) |
60 |
54 59
|
eqeltrid |
⊢ ( 𝜑 → ( ( 0 [,] 1 ) × { ( 𝐵 ‘ 0 ) } ) ∈ ( II Cn 𝑆 ) ) |
61 |
53 60
|
phtpycn |
⊢ ( 𝜑 → ( 𝐵 ( PHtpy ‘ 𝑆 ) ( ( 0 [,] 1 ) × { ( 𝐵 ‘ 0 ) } ) ) ⊆ ( ( II ×t II ) Cn 𝑆 ) ) |
62 |
61 7
|
sseldd |
⊢ ( 𝜑 → 𝐻 ∈ ( ( II ×t II ) Cn 𝑆 ) ) |
63 |
42 14
|
cnf |
⊢ ( 𝐻 ∈ ( ( II ×t II ) Cn 𝑆 ) → 𝐻 : ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ⟶ ∪ 𝑆 ) |
64 |
|
ffn |
⊢ ( 𝐻 : ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ⟶ ∪ 𝑆 → 𝐻 Fn ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) |
65 |
62 63 64
|
3syl |
⊢ ( 𝜑 → 𝐻 Fn ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) |
66 |
|
fnov |
⊢ ( 𝐻 Fn ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ↔ 𝐻 = ( 𝑥 ∈ ( 0 [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ ( 𝑥 𝐻 𝑦 ) ) ) |
67 |
65 66
|
sylib |
⊢ ( 𝜑 → 𝐻 = ( 𝑥 ∈ ( 0 [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ ( 𝑥 𝐻 𝑦 ) ) ) |
68 |
67 62
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 0 [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ ( 𝑥 𝐻 𝑦 ) ) ∈ ( ( II ×t II ) Cn 𝑆 ) ) |
69 |
10 10 48 68
|
cnmpt2t |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 0 [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ 〈 ( 𝑥 𝐺 𝑦 ) , ( 𝑥 𝐻 𝑦 ) 〉 ) ∈ ( ( II ×t II ) Cn ( 𝑅 ×t 𝑆 ) ) ) |
70 |
30 38
|
phtpyhtpy |
⊢ ( 𝜑 → ( 𝐴 ( PHtpy ‘ 𝑅 ) ( ( 0 [,] 1 ) × { ( 𝐴 ‘ 0 ) } ) ) ⊆ ( 𝐴 ( II Htpy 𝑅 ) ( ( 0 [,] 1 ) × { ( 𝐴 ‘ 0 ) } ) ) ) |
71 |
70 6
|
sseldd |
⊢ ( 𝜑 → 𝐺 ∈ ( 𝐴 ( II Htpy 𝑅 ) ( ( 0 [,] 1 ) × { ( 𝐴 ‘ 0 ) } ) ) ) |
72 |
10 30 38 71
|
htpyi |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( 𝑠 𝐺 0 ) = ( 𝐴 ‘ 𝑠 ) ∧ ( 𝑠 𝐺 1 ) = ( ( ( 0 [,] 1 ) × { ( 𝐴 ‘ 0 ) } ) ‘ 𝑠 ) ) ) |
73 |
72
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝑠 𝐺 0 ) = ( 𝐴 ‘ 𝑠 ) ) |
74 |
4
|
fveq1i |
⊢ ( 𝐴 ‘ 𝑠 ) = ( ( ( 1st ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ∘ 𝐹 ) ‘ 𝑠 ) |
75 |
|
fvco3 |
⊢ ( ( 𝐹 : ( 0 [,] 1 ) ⟶ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( ( 1st ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ∘ 𝐹 ) ‘ 𝑠 ) = ( ( 1st ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ‘ ( 𝐹 ‘ 𝑠 ) ) ) |
76 |
20 75
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( ( 1st ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ∘ 𝐹 ) ‘ 𝑠 ) = ( ( 1st ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ‘ ( 𝐹 ‘ 𝑠 ) ) ) |
77 |
74 76
|
syl5eq |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝐴 ‘ 𝑠 ) = ( ( 1st ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ‘ ( 𝐹 ‘ 𝑠 ) ) ) |
78 |
|
ffvelrn |
⊢ ( ( 𝐹 : ( 0 [,] 1 ) ⟶ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝐹 ‘ 𝑠 ) ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) |
79 |
20 78
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝐹 ‘ 𝑠 ) ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) |
80 |
|
fvres |
⊢ ( ( 𝐹 ‘ 𝑠 ) ∈ ( ∪ 𝑅 × ∪ 𝑆 ) → ( ( 1st ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ‘ ( 𝐹 ‘ 𝑠 ) ) = ( 1st ‘ ( 𝐹 ‘ 𝑠 ) ) ) |
81 |
79 80
|
syl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( 1st ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ‘ ( 𝐹 ‘ 𝑠 ) ) = ( 1st ‘ ( 𝐹 ‘ 𝑠 ) ) ) |
82 |
73 77 81
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝑠 𝐺 0 ) = ( 1st ‘ ( 𝐹 ‘ 𝑠 ) ) ) |
83 |
53 60
|
phtpyhtpy |
⊢ ( 𝜑 → ( 𝐵 ( PHtpy ‘ 𝑆 ) ( ( 0 [,] 1 ) × { ( 𝐵 ‘ 0 ) } ) ) ⊆ ( 𝐵 ( II Htpy 𝑆 ) ( ( 0 [,] 1 ) × { ( 𝐵 ‘ 0 ) } ) ) ) |
84 |
83 7
|
sseldd |
⊢ ( 𝜑 → 𝐻 ∈ ( 𝐵 ( II Htpy 𝑆 ) ( ( 0 [,] 1 ) × { ( 𝐵 ‘ 0 ) } ) ) ) |
85 |
10 53 60 84
|
htpyi |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( 𝑠 𝐻 0 ) = ( 𝐵 ‘ 𝑠 ) ∧ ( 𝑠 𝐻 1 ) = ( ( ( 0 [,] 1 ) × { ( 𝐵 ‘ 0 ) } ) ‘ 𝑠 ) ) ) |
86 |
85
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝑠 𝐻 0 ) = ( 𝐵 ‘ 𝑠 ) ) |
87 |
5
|
fveq1i |
⊢ ( 𝐵 ‘ 𝑠 ) = ( ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ∘ 𝐹 ) ‘ 𝑠 ) |
88 |
|
fvco3 |
⊢ ( ( 𝐹 : ( 0 [,] 1 ) ⟶ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ∘ 𝐹 ) ‘ 𝑠 ) = ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ‘ ( 𝐹 ‘ 𝑠 ) ) ) |
89 |
20 88
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ∘ 𝐹 ) ‘ 𝑠 ) = ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ‘ ( 𝐹 ‘ 𝑠 ) ) ) |
90 |
87 89
|
syl5eq |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝐵 ‘ 𝑠 ) = ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ‘ ( 𝐹 ‘ 𝑠 ) ) ) |
91 |
|
fvres |
⊢ ( ( 𝐹 ‘ 𝑠 ) ∈ ( ∪ 𝑅 × ∪ 𝑆 ) → ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ‘ ( 𝐹 ‘ 𝑠 ) ) = ( 2nd ‘ ( 𝐹 ‘ 𝑠 ) ) ) |
92 |
79 91
|
syl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ‘ ( 𝐹 ‘ 𝑠 ) ) = ( 2nd ‘ ( 𝐹 ‘ 𝑠 ) ) ) |
93 |
86 90 92
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝑠 𝐻 0 ) = ( 2nd ‘ ( 𝐹 ‘ 𝑠 ) ) ) |
94 |
82 93
|
opeq12d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → 〈 ( 𝑠 𝐺 0 ) , ( 𝑠 𝐻 0 ) 〉 = 〈 ( 1st ‘ ( 𝐹 ‘ 𝑠 ) ) , ( 2nd ‘ ( 𝐹 ‘ 𝑠 ) ) 〉 ) |
95 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → 𝑠 ∈ ( 0 [,] 1 ) ) |
96 |
|
oveq12 |
⊢ ( ( 𝑥 = 𝑠 ∧ 𝑦 = 0 ) → ( 𝑥 𝐺 𝑦 ) = ( 𝑠 𝐺 0 ) ) |
97 |
|
oveq12 |
⊢ ( ( 𝑥 = 𝑠 ∧ 𝑦 = 0 ) → ( 𝑥 𝐻 𝑦 ) = ( 𝑠 𝐻 0 ) ) |
98 |
96 97
|
opeq12d |
⊢ ( ( 𝑥 = 𝑠 ∧ 𝑦 = 0 ) → 〈 ( 𝑥 𝐺 𝑦 ) , ( 𝑥 𝐻 𝑦 ) 〉 = 〈 ( 𝑠 𝐺 0 ) , ( 𝑠 𝐻 0 ) 〉 ) |
99 |
|
eqid |
⊢ ( 𝑥 ∈ ( 0 [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ 〈 ( 𝑥 𝐺 𝑦 ) , ( 𝑥 𝐻 𝑦 ) 〉 ) = ( 𝑥 ∈ ( 0 [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ 〈 ( 𝑥 𝐺 𝑦 ) , ( 𝑥 𝐻 𝑦 ) 〉 ) |
100 |
|
opex |
⊢ 〈 ( 𝑠 𝐺 0 ) , ( 𝑠 𝐻 0 ) 〉 ∈ V |
101 |
98 99 100
|
ovmpoa |
⊢ ( ( 𝑠 ∈ ( 0 [,] 1 ) ∧ 0 ∈ ( 0 [,] 1 ) ) → ( 𝑠 ( 𝑥 ∈ ( 0 [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ 〈 ( 𝑥 𝐺 𝑦 ) , ( 𝑥 𝐻 𝑦 ) 〉 ) 0 ) = 〈 ( 𝑠 𝐺 0 ) , ( 𝑠 𝐻 0 ) 〉 ) |
102 |
95 21 101
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝑠 ( 𝑥 ∈ ( 0 [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ 〈 ( 𝑥 𝐺 𝑦 ) , ( 𝑥 𝐻 𝑦 ) 〉 ) 0 ) = 〈 ( 𝑠 𝐺 0 ) , ( 𝑠 𝐻 0 ) 〉 ) |
103 |
|
1st2nd2 |
⊢ ( ( 𝐹 ‘ 𝑠 ) ∈ ( ∪ 𝑅 × ∪ 𝑆 ) → ( 𝐹 ‘ 𝑠 ) = 〈 ( 1st ‘ ( 𝐹 ‘ 𝑠 ) ) , ( 2nd ‘ ( 𝐹 ‘ 𝑠 ) ) 〉 ) |
104 |
79 103
|
syl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝐹 ‘ 𝑠 ) = 〈 ( 1st ‘ ( 𝐹 ‘ 𝑠 ) ) , ( 2nd ‘ ( 𝐹 ‘ 𝑠 ) ) 〉 ) |
105 |
94 102 104
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝑠 ( 𝑥 ∈ ( 0 [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ 〈 ( 𝑥 𝐺 𝑦 ) , ( 𝑥 𝐻 𝑦 ) 〉 ) 0 ) = ( 𝐹 ‘ 𝑠 ) ) |
106 |
72
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝑠 𝐺 1 ) = ( ( ( 0 [,] 1 ) × { ( 𝐴 ‘ 0 ) } ) ‘ 𝑠 ) ) |
107 |
|
fvex |
⊢ ( 𝐴 ‘ 0 ) ∈ V |
108 |
107
|
fvconst2 |
⊢ ( 𝑠 ∈ ( 0 [,] 1 ) → ( ( ( 0 [,] 1 ) × { ( 𝐴 ‘ 0 ) } ) ‘ 𝑠 ) = ( 𝐴 ‘ 0 ) ) |
109 |
108
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( ( 0 [,] 1 ) × { ( 𝐴 ‘ 0 ) } ) ‘ 𝑠 ) = ( 𝐴 ‘ 0 ) ) |
110 |
4
|
fveq1i |
⊢ ( 𝐴 ‘ 0 ) = ( ( ( 1st ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ∘ 𝐹 ) ‘ 0 ) |
111 |
|
fvco3 |
⊢ ( ( 𝐹 : ( 0 [,] 1 ) ⟶ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 0 ∈ ( 0 [,] 1 ) ) → ( ( ( 1st ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ∘ 𝐹 ) ‘ 0 ) = ( ( 1st ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ‘ ( 𝐹 ‘ 0 ) ) ) |
112 |
20 21 111
|
sylancl |
⊢ ( 𝜑 → ( ( ( 1st ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ∘ 𝐹 ) ‘ 0 ) = ( ( 1st ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ‘ ( 𝐹 ‘ 0 ) ) ) |
113 |
|
fvres |
⊢ ( ( 𝐹 ‘ 0 ) ∈ ( ∪ 𝑅 × ∪ 𝑆 ) → ( ( 1st ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ‘ ( 𝐹 ‘ 0 ) ) = ( 1st ‘ ( 𝐹 ‘ 0 ) ) ) |
114 |
23 113
|
syl |
⊢ ( 𝜑 → ( ( 1st ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ‘ ( 𝐹 ‘ 0 ) ) = ( 1st ‘ ( 𝐹 ‘ 0 ) ) ) |
115 |
112 114
|
eqtrd |
⊢ ( 𝜑 → ( ( ( 1st ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ∘ 𝐹 ) ‘ 0 ) = ( 1st ‘ ( 𝐹 ‘ 0 ) ) ) |
116 |
110 115
|
syl5eq |
⊢ ( 𝜑 → ( 𝐴 ‘ 0 ) = ( 1st ‘ ( 𝐹 ‘ 0 ) ) ) |
117 |
116
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝐴 ‘ 0 ) = ( 1st ‘ ( 𝐹 ‘ 0 ) ) ) |
118 |
106 109 117
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝑠 𝐺 1 ) = ( 1st ‘ ( 𝐹 ‘ 0 ) ) ) |
119 |
85
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝑠 𝐻 1 ) = ( ( ( 0 [,] 1 ) × { ( 𝐵 ‘ 0 ) } ) ‘ 𝑠 ) ) |
120 |
|
fvex |
⊢ ( 𝐵 ‘ 0 ) ∈ V |
121 |
120
|
fvconst2 |
⊢ ( 𝑠 ∈ ( 0 [,] 1 ) → ( ( ( 0 [,] 1 ) × { ( 𝐵 ‘ 0 ) } ) ‘ 𝑠 ) = ( 𝐵 ‘ 0 ) ) |
122 |
121
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( ( 0 [,] 1 ) × { ( 𝐵 ‘ 0 ) } ) ‘ 𝑠 ) = ( 𝐵 ‘ 0 ) ) |
123 |
5
|
fveq1i |
⊢ ( 𝐵 ‘ 0 ) = ( ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ∘ 𝐹 ) ‘ 0 ) |
124 |
|
fvco3 |
⊢ ( ( 𝐹 : ( 0 [,] 1 ) ⟶ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 0 ∈ ( 0 [,] 1 ) ) → ( ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ∘ 𝐹 ) ‘ 0 ) = ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ‘ ( 𝐹 ‘ 0 ) ) ) |
125 |
20 21 124
|
sylancl |
⊢ ( 𝜑 → ( ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ∘ 𝐹 ) ‘ 0 ) = ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ‘ ( 𝐹 ‘ 0 ) ) ) |
126 |
|
fvres |
⊢ ( ( 𝐹 ‘ 0 ) ∈ ( ∪ 𝑅 × ∪ 𝑆 ) → ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ‘ ( 𝐹 ‘ 0 ) ) = ( 2nd ‘ ( 𝐹 ‘ 0 ) ) ) |
127 |
23 126
|
syl |
⊢ ( 𝜑 → ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ‘ ( 𝐹 ‘ 0 ) ) = ( 2nd ‘ ( 𝐹 ‘ 0 ) ) ) |
128 |
125 127
|
eqtrd |
⊢ ( 𝜑 → ( ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ∘ 𝐹 ) ‘ 0 ) = ( 2nd ‘ ( 𝐹 ‘ 0 ) ) ) |
129 |
123 128
|
syl5eq |
⊢ ( 𝜑 → ( 𝐵 ‘ 0 ) = ( 2nd ‘ ( 𝐹 ‘ 0 ) ) ) |
130 |
129
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝐵 ‘ 0 ) = ( 2nd ‘ ( 𝐹 ‘ 0 ) ) ) |
131 |
119 122 130
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝑠 𝐻 1 ) = ( 2nd ‘ ( 𝐹 ‘ 0 ) ) ) |
132 |
118 131
|
opeq12d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → 〈 ( 𝑠 𝐺 1 ) , ( 𝑠 𝐻 1 ) 〉 = 〈 ( 1st ‘ ( 𝐹 ‘ 0 ) ) , ( 2nd ‘ ( 𝐹 ‘ 0 ) ) 〉 ) |
133 |
|
1elunit |
⊢ 1 ∈ ( 0 [,] 1 ) |
134 |
|
oveq12 |
⊢ ( ( 𝑥 = 𝑠 ∧ 𝑦 = 1 ) → ( 𝑥 𝐺 𝑦 ) = ( 𝑠 𝐺 1 ) ) |
135 |
|
oveq12 |
⊢ ( ( 𝑥 = 𝑠 ∧ 𝑦 = 1 ) → ( 𝑥 𝐻 𝑦 ) = ( 𝑠 𝐻 1 ) ) |
136 |
134 135
|
opeq12d |
⊢ ( ( 𝑥 = 𝑠 ∧ 𝑦 = 1 ) → 〈 ( 𝑥 𝐺 𝑦 ) , ( 𝑥 𝐻 𝑦 ) 〉 = 〈 ( 𝑠 𝐺 1 ) , ( 𝑠 𝐻 1 ) 〉 ) |
137 |
|
opex |
⊢ 〈 ( 𝑠 𝐺 1 ) , ( 𝑠 𝐻 1 ) 〉 ∈ V |
138 |
136 99 137
|
ovmpoa |
⊢ ( ( 𝑠 ∈ ( 0 [,] 1 ) ∧ 1 ∈ ( 0 [,] 1 ) ) → ( 𝑠 ( 𝑥 ∈ ( 0 [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ 〈 ( 𝑥 𝐺 𝑦 ) , ( 𝑥 𝐻 𝑦 ) 〉 ) 1 ) = 〈 ( 𝑠 𝐺 1 ) , ( 𝑠 𝐻 1 ) 〉 ) |
139 |
95 133 138
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝑠 ( 𝑥 ∈ ( 0 [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ 〈 ( 𝑥 𝐺 𝑦 ) , ( 𝑥 𝐻 𝑦 ) 〉 ) 1 ) = 〈 ( 𝑠 𝐺 1 ) , ( 𝑠 𝐻 1 ) 〉 ) |
140 |
|
fvex |
⊢ ( 𝐹 ‘ 0 ) ∈ V |
141 |
140
|
fvconst2 |
⊢ ( 𝑠 ∈ ( 0 [,] 1 ) → ( ( ( 0 [,] 1 ) × { ( 𝐹 ‘ 0 ) } ) ‘ 𝑠 ) = ( 𝐹 ‘ 0 ) ) |
142 |
141
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( ( 0 [,] 1 ) × { ( 𝐹 ‘ 0 ) } ) ‘ 𝑠 ) = ( 𝐹 ‘ 0 ) ) |
143 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝐹 ‘ 0 ) ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) |
144 |
|
1st2nd2 |
⊢ ( ( 𝐹 ‘ 0 ) ∈ ( ∪ 𝑅 × ∪ 𝑆 ) → ( 𝐹 ‘ 0 ) = 〈 ( 1st ‘ ( 𝐹 ‘ 0 ) ) , ( 2nd ‘ ( 𝐹 ‘ 0 ) ) 〉 ) |
145 |
143 144
|
syl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝐹 ‘ 0 ) = 〈 ( 1st ‘ ( 𝐹 ‘ 0 ) ) , ( 2nd ‘ ( 𝐹 ‘ 0 ) ) 〉 ) |
146 |
142 145
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( ( 0 [,] 1 ) × { ( 𝐹 ‘ 0 ) } ) ‘ 𝑠 ) = 〈 ( 1st ‘ ( 𝐹 ‘ 0 ) ) , ( 2nd ‘ ( 𝐹 ‘ 0 ) ) 〉 ) |
147 |
132 139 146
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝑠 ( 𝑥 ∈ ( 0 [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ 〈 ( 𝑥 𝐺 𝑦 ) , ( 𝑥 𝐻 𝑦 ) 〉 ) 1 ) = ( ( ( 0 [,] 1 ) × { ( 𝐹 ‘ 0 ) } ) ‘ 𝑠 ) ) |
148 |
30 38 6
|
phtpyi |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( 0 𝐺 𝑠 ) = ( 𝐴 ‘ 0 ) ∧ ( 1 𝐺 𝑠 ) = ( 𝐴 ‘ 1 ) ) ) |
149 |
148
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 0 𝐺 𝑠 ) = ( 𝐴 ‘ 0 ) ) |
150 |
149 117
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 0 𝐺 𝑠 ) = ( 1st ‘ ( 𝐹 ‘ 0 ) ) ) |
151 |
53 60 7
|
phtpyi |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( 0 𝐻 𝑠 ) = ( 𝐵 ‘ 0 ) ∧ ( 1 𝐻 𝑠 ) = ( 𝐵 ‘ 1 ) ) ) |
152 |
151
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 0 𝐻 𝑠 ) = ( 𝐵 ‘ 0 ) ) |
153 |
152 130
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 0 𝐻 𝑠 ) = ( 2nd ‘ ( 𝐹 ‘ 0 ) ) ) |
154 |
150 153
|
opeq12d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → 〈 ( 0 𝐺 𝑠 ) , ( 0 𝐻 𝑠 ) 〉 = 〈 ( 1st ‘ ( 𝐹 ‘ 0 ) ) , ( 2nd ‘ ( 𝐹 ‘ 0 ) ) 〉 ) |
155 |
|
oveq12 |
⊢ ( ( 𝑥 = 0 ∧ 𝑦 = 𝑠 ) → ( 𝑥 𝐺 𝑦 ) = ( 0 𝐺 𝑠 ) ) |
156 |
|
oveq12 |
⊢ ( ( 𝑥 = 0 ∧ 𝑦 = 𝑠 ) → ( 𝑥 𝐻 𝑦 ) = ( 0 𝐻 𝑠 ) ) |
157 |
155 156
|
opeq12d |
⊢ ( ( 𝑥 = 0 ∧ 𝑦 = 𝑠 ) → 〈 ( 𝑥 𝐺 𝑦 ) , ( 𝑥 𝐻 𝑦 ) 〉 = 〈 ( 0 𝐺 𝑠 ) , ( 0 𝐻 𝑠 ) 〉 ) |
158 |
|
opex |
⊢ 〈 ( 0 𝐺 𝑠 ) , ( 0 𝐻 𝑠 ) 〉 ∈ V |
159 |
157 99 158
|
ovmpoa |
⊢ ( ( 0 ∈ ( 0 [,] 1 ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 0 ( 𝑥 ∈ ( 0 [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ 〈 ( 𝑥 𝐺 𝑦 ) , ( 𝑥 𝐻 𝑦 ) 〉 ) 𝑠 ) = 〈 ( 0 𝐺 𝑠 ) , ( 0 𝐻 𝑠 ) 〉 ) |
160 |
21 95 159
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 0 ( 𝑥 ∈ ( 0 [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ 〈 ( 𝑥 𝐺 𝑦 ) , ( 𝑥 𝐻 𝑦 ) 〉 ) 𝑠 ) = 〈 ( 0 𝐺 𝑠 ) , ( 0 𝐻 𝑠 ) 〉 ) |
161 |
154 160 145
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 0 ( 𝑥 ∈ ( 0 [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ 〈 ( 𝑥 𝐺 𝑦 ) , ( 𝑥 𝐻 𝑦 ) 〉 ) 𝑠 ) = ( 𝐹 ‘ 0 ) ) |
162 |
148
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 1 𝐺 𝑠 ) = ( 𝐴 ‘ 1 ) ) |
163 |
4
|
fveq1i |
⊢ ( 𝐴 ‘ 1 ) = ( ( ( 1st ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ∘ 𝐹 ) ‘ 1 ) |
164 |
|
fvco3 |
⊢ ( ( 𝐹 : ( 0 [,] 1 ) ⟶ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 1 ∈ ( 0 [,] 1 ) ) → ( ( ( 1st ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ∘ 𝐹 ) ‘ 1 ) = ( ( 1st ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ‘ ( 𝐹 ‘ 1 ) ) ) |
165 |
20 133 164
|
sylancl |
⊢ ( 𝜑 → ( ( ( 1st ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ∘ 𝐹 ) ‘ 1 ) = ( ( 1st ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ‘ ( 𝐹 ‘ 1 ) ) ) |
166 |
163 165
|
syl5eq |
⊢ ( 𝜑 → ( 𝐴 ‘ 1 ) = ( ( 1st ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ‘ ( 𝐹 ‘ 1 ) ) ) |
167 |
|
ffvelrn |
⊢ ( ( 𝐹 : ( 0 [,] 1 ) ⟶ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 1 ∈ ( 0 [,] 1 ) ) → ( 𝐹 ‘ 1 ) ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) |
168 |
20 133 167
|
sylancl |
⊢ ( 𝜑 → ( 𝐹 ‘ 1 ) ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) |
169 |
|
fvres |
⊢ ( ( 𝐹 ‘ 1 ) ∈ ( ∪ 𝑅 × ∪ 𝑆 ) → ( ( 1st ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ‘ ( 𝐹 ‘ 1 ) ) = ( 1st ‘ ( 𝐹 ‘ 1 ) ) ) |
170 |
168 169
|
syl |
⊢ ( 𝜑 → ( ( 1st ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ‘ ( 𝐹 ‘ 1 ) ) = ( 1st ‘ ( 𝐹 ‘ 1 ) ) ) |
171 |
166 170
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 ‘ 1 ) = ( 1st ‘ ( 𝐹 ‘ 1 ) ) ) |
172 |
171
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝐴 ‘ 1 ) = ( 1st ‘ ( 𝐹 ‘ 1 ) ) ) |
173 |
162 172
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 1 𝐺 𝑠 ) = ( 1st ‘ ( 𝐹 ‘ 1 ) ) ) |
174 |
151
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 1 𝐻 𝑠 ) = ( 𝐵 ‘ 1 ) ) |
175 |
5
|
fveq1i |
⊢ ( 𝐵 ‘ 1 ) = ( ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ∘ 𝐹 ) ‘ 1 ) |
176 |
|
fvco3 |
⊢ ( ( 𝐹 : ( 0 [,] 1 ) ⟶ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 1 ∈ ( 0 [,] 1 ) ) → ( ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ∘ 𝐹 ) ‘ 1 ) = ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ‘ ( 𝐹 ‘ 1 ) ) ) |
177 |
20 133 176
|
sylancl |
⊢ ( 𝜑 → ( ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ∘ 𝐹 ) ‘ 1 ) = ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ‘ ( 𝐹 ‘ 1 ) ) ) |
178 |
175 177
|
syl5eq |
⊢ ( 𝜑 → ( 𝐵 ‘ 1 ) = ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ‘ ( 𝐹 ‘ 1 ) ) ) |
179 |
|
fvres |
⊢ ( ( 𝐹 ‘ 1 ) ∈ ( ∪ 𝑅 × ∪ 𝑆 ) → ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ‘ ( 𝐹 ‘ 1 ) ) = ( 2nd ‘ ( 𝐹 ‘ 1 ) ) ) |
180 |
168 179
|
syl |
⊢ ( 𝜑 → ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ‘ ( 𝐹 ‘ 1 ) ) = ( 2nd ‘ ( 𝐹 ‘ 1 ) ) ) |
181 |
178 180
|
eqtrd |
⊢ ( 𝜑 → ( 𝐵 ‘ 1 ) = ( 2nd ‘ ( 𝐹 ‘ 1 ) ) ) |
182 |
181
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝐵 ‘ 1 ) = ( 2nd ‘ ( 𝐹 ‘ 1 ) ) ) |
183 |
174 182
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 1 𝐻 𝑠 ) = ( 2nd ‘ ( 𝐹 ‘ 1 ) ) ) |
184 |
173 183
|
opeq12d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → 〈 ( 1 𝐺 𝑠 ) , ( 1 𝐻 𝑠 ) 〉 = 〈 ( 1st ‘ ( 𝐹 ‘ 1 ) ) , ( 2nd ‘ ( 𝐹 ‘ 1 ) ) 〉 ) |
185 |
|
oveq12 |
⊢ ( ( 𝑥 = 1 ∧ 𝑦 = 𝑠 ) → ( 𝑥 𝐺 𝑦 ) = ( 1 𝐺 𝑠 ) ) |
186 |
|
oveq12 |
⊢ ( ( 𝑥 = 1 ∧ 𝑦 = 𝑠 ) → ( 𝑥 𝐻 𝑦 ) = ( 1 𝐻 𝑠 ) ) |
187 |
185 186
|
opeq12d |
⊢ ( ( 𝑥 = 1 ∧ 𝑦 = 𝑠 ) → 〈 ( 𝑥 𝐺 𝑦 ) , ( 𝑥 𝐻 𝑦 ) 〉 = 〈 ( 1 𝐺 𝑠 ) , ( 1 𝐻 𝑠 ) 〉 ) |
188 |
|
opex |
⊢ 〈 ( 1 𝐺 𝑠 ) , ( 1 𝐻 𝑠 ) 〉 ∈ V |
189 |
187 99 188
|
ovmpoa |
⊢ ( ( 1 ∈ ( 0 [,] 1 ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 1 ( 𝑥 ∈ ( 0 [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ 〈 ( 𝑥 𝐺 𝑦 ) , ( 𝑥 𝐻 𝑦 ) 〉 ) 𝑠 ) = 〈 ( 1 𝐺 𝑠 ) , ( 1 𝐻 𝑠 ) 〉 ) |
190 |
133 95 189
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 1 ( 𝑥 ∈ ( 0 [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ 〈 ( 𝑥 𝐺 𝑦 ) , ( 𝑥 𝐻 𝑦 ) 〉 ) 𝑠 ) = 〈 ( 1 𝐺 𝑠 ) , ( 1 𝐻 𝑠 ) 〉 ) |
191 |
168
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝐹 ‘ 1 ) ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) |
192 |
|
1st2nd2 |
⊢ ( ( 𝐹 ‘ 1 ) ∈ ( ∪ 𝑅 × ∪ 𝑆 ) → ( 𝐹 ‘ 1 ) = 〈 ( 1st ‘ ( 𝐹 ‘ 1 ) ) , ( 2nd ‘ ( 𝐹 ‘ 1 ) ) 〉 ) |
193 |
191 192
|
syl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝐹 ‘ 1 ) = 〈 ( 1st ‘ ( 𝐹 ‘ 1 ) ) , ( 2nd ‘ ( 𝐹 ‘ 1 ) ) 〉 ) |
194 |
184 190 193
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 1 ( 𝑥 ∈ ( 0 [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ 〈 ( 𝑥 𝐺 𝑦 ) , ( 𝑥 𝐻 𝑦 ) 〉 ) 𝑠 ) = ( 𝐹 ‘ 1 ) ) |
195 |
3 25 69 105 147 161 194
|
isphtpy2d |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 0 [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ 〈 ( 𝑥 𝐺 𝑦 ) , ( 𝑥 𝐻 𝑦 ) 〉 ) ∈ ( 𝐹 ( PHtpy ‘ ( 𝑅 ×t 𝑆 ) ) ( ( 0 [,] 1 ) × { ( 𝐹 ‘ 0 ) } ) ) ) |
196 |
195
|
ne0d |
⊢ ( 𝜑 → ( 𝐹 ( PHtpy ‘ ( 𝑅 ×t 𝑆 ) ) ( ( 0 [,] 1 ) × { ( 𝐹 ‘ 0 ) } ) ) ≠ ∅ ) |
197 |
|
isphtpc |
⊢ ( 𝐹 ( ≃ph ‘ ( 𝑅 ×t 𝑆 ) ) ( ( 0 [,] 1 ) × { ( 𝐹 ‘ 0 ) } ) ↔ ( 𝐹 ∈ ( II Cn ( 𝑅 ×t 𝑆 ) ) ∧ ( ( 0 [,] 1 ) × { ( 𝐹 ‘ 0 ) } ) ∈ ( II Cn ( 𝑅 ×t 𝑆 ) ) ∧ ( 𝐹 ( PHtpy ‘ ( 𝑅 ×t 𝑆 ) ) ( ( 0 [,] 1 ) × { ( 𝐹 ‘ 0 ) } ) ) ≠ ∅ ) ) |
198 |
3 25 196 197
|
syl3anbrc |
⊢ ( 𝜑 → 𝐹 ( ≃ph ‘ ( 𝑅 ×t 𝑆 ) ) ( ( 0 [,] 1 ) × { ( 𝐹 ‘ 0 ) } ) ) |