| Step |
Hyp |
Ref |
Expression |
| 1 |
|
txsconn.1 |
⊢ ( 𝜑 → 𝑅 ∈ Top ) |
| 2 |
|
txsconn.2 |
⊢ ( 𝜑 → 𝑆 ∈ Top ) |
| 3 |
|
txsconn.3 |
⊢ ( 𝜑 → 𝐹 ∈ ( II Cn ( 𝑅 ×t 𝑆 ) ) ) |
| 4 |
|
txsconn.5 |
⊢ 𝐴 = ( ( 1st ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ∘ 𝐹 ) |
| 5 |
|
txsconn.6 |
⊢ 𝐵 = ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ∘ 𝐹 ) |
| 6 |
|
txsconn.7 |
⊢ ( 𝜑 → 𝐺 ∈ ( 𝐴 ( PHtpy ‘ 𝑅 ) ( ( 0 [,] 1 ) × { ( 𝐴 ‘ 0 ) } ) ) ) |
| 7 |
|
txsconn.8 |
⊢ ( 𝜑 → 𝐻 ∈ ( 𝐵 ( PHtpy ‘ 𝑆 ) ( ( 0 [,] 1 ) × { ( 𝐵 ‘ 0 ) } ) ) ) |
| 8 |
|
fconstmpt |
⊢ ( ( 0 [,] 1 ) × { ( 𝐹 ‘ 0 ) } ) = ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( 𝐹 ‘ 0 ) ) |
| 9 |
|
iitopon |
⊢ II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) |
| 10 |
9
|
a1i |
⊢ ( 𝜑 → II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) ) |
| 11 |
|
eqid |
⊢ ∪ 𝑅 = ∪ 𝑅 |
| 12 |
11
|
toptopon |
⊢ ( 𝑅 ∈ Top ↔ 𝑅 ∈ ( TopOn ‘ ∪ 𝑅 ) ) |
| 13 |
1 12
|
sylib |
⊢ ( 𝜑 → 𝑅 ∈ ( TopOn ‘ ∪ 𝑅 ) ) |
| 14 |
|
eqid |
⊢ ∪ 𝑆 = ∪ 𝑆 |
| 15 |
14
|
toptopon |
⊢ ( 𝑆 ∈ Top ↔ 𝑆 ∈ ( TopOn ‘ ∪ 𝑆 ) ) |
| 16 |
2 15
|
sylib |
⊢ ( 𝜑 → 𝑆 ∈ ( TopOn ‘ ∪ 𝑆 ) ) |
| 17 |
|
txtopon |
⊢ ( ( 𝑅 ∈ ( TopOn ‘ ∪ 𝑅 ) ∧ 𝑆 ∈ ( TopOn ‘ ∪ 𝑆 ) ) → ( 𝑅 ×t 𝑆 ) ∈ ( TopOn ‘ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) |
| 18 |
13 16 17
|
syl2anc |
⊢ ( 𝜑 → ( 𝑅 ×t 𝑆 ) ∈ ( TopOn ‘ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) |
| 19 |
|
cnf2 |
⊢ ( ( II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) ∧ ( 𝑅 ×t 𝑆 ) ∈ ( TopOn ‘ ( ∪ 𝑅 × ∪ 𝑆 ) ) ∧ 𝐹 ∈ ( II Cn ( 𝑅 ×t 𝑆 ) ) ) → 𝐹 : ( 0 [,] 1 ) ⟶ ( ∪ 𝑅 × ∪ 𝑆 ) ) |
| 20 |
10 18 3 19
|
syl3anc |
⊢ ( 𝜑 → 𝐹 : ( 0 [,] 1 ) ⟶ ( ∪ 𝑅 × ∪ 𝑆 ) ) |
| 21 |
|
0elunit |
⊢ 0 ∈ ( 0 [,] 1 ) |
| 22 |
|
ffvelcdm |
⊢ ( ( 𝐹 : ( 0 [,] 1 ) ⟶ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 0 ∈ ( 0 [,] 1 ) ) → ( 𝐹 ‘ 0 ) ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) |
| 23 |
20 21 22
|
sylancl |
⊢ ( 𝜑 → ( 𝐹 ‘ 0 ) ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) |
| 24 |
10 18 23
|
cnmptc |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( 𝐹 ‘ 0 ) ) ∈ ( II Cn ( 𝑅 ×t 𝑆 ) ) ) |
| 25 |
8 24
|
eqeltrid |
⊢ ( 𝜑 → ( ( 0 [,] 1 ) × { ( 𝐹 ‘ 0 ) } ) ∈ ( II Cn ( 𝑅 ×t 𝑆 ) ) ) |
| 26 |
|
tx1cn |
⊢ ( ( 𝑅 ∈ ( TopOn ‘ ∪ 𝑅 ) ∧ 𝑆 ∈ ( TopOn ‘ ∪ 𝑆 ) ) → ( 1st ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ∈ ( ( 𝑅 ×t 𝑆 ) Cn 𝑅 ) ) |
| 27 |
13 16 26
|
syl2anc |
⊢ ( 𝜑 → ( 1st ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ∈ ( ( 𝑅 ×t 𝑆 ) Cn 𝑅 ) ) |
| 28 |
|
cnco |
⊢ ( ( 𝐹 ∈ ( II Cn ( 𝑅 ×t 𝑆 ) ) ∧ ( 1st ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ∈ ( ( 𝑅 ×t 𝑆 ) Cn 𝑅 ) ) → ( ( 1st ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ∘ 𝐹 ) ∈ ( II Cn 𝑅 ) ) |
| 29 |
3 27 28
|
syl2anc |
⊢ ( 𝜑 → ( ( 1st ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ∘ 𝐹 ) ∈ ( II Cn 𝑅 ) ) |
| 30 |
4 29
|
eqeltrid |
⊢ ( 𝜑 → 𝐴 ∈ ( II Cn 𝑅 ) ) |
| 31 |
|
fconstmpt |
⊢ ( ( 0 [,] 1 ) × { ( 𝐴 ‘ 0 ) } ) = ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( 𝐴 ‘ 0 ) ) |
| 32 |
|
iiuni |
⊢ ( 0 [,] 1 ) = ∪ II |
| 33 |
32 11
|
cnf |
⊢ ( 𝐴 ∈ ( II Cn 𝑅 ) → 𝐴 : ( 0 [,] 1 ) ⟶ ∪ 𝑅 ) |
| 34 |
30 33
|
syl |
⊢ ( 𝜑 → 𝐴 : ( 0 [,] 1 ) ⟶ ∪ 𝑅 ) |
| 35 |
|
ffvelcdm |
⊢ ( ( 𝐴 : ( 0 [,] 1 ) ⟶ ∪ 𝑅 ∧ 0 ∈ ( 0 [,] 1 ) ) → ( 𝐴 ‘ 0 ) ∈ ∪ 𝑅 ) |
| 36 |
34 21 35
|
sylancl |
⊢ ( 𝜑 → ( 𝐴 ‘ 0 ) ∈ ∪ 𝑅 ) |
| 37 |
10 13 36
|
cnmptc |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( 𝐴 ‘ 0 ) ) ∈ ( II Cn 𝑅 ) ) |
| 38 |
31 37
|
eqeltrid |
⊢ ( 𝜑 → ( ( 0 [,] 1 ) × { ( 𝐴 ‘ 0 ) } ) ∈ ( II Cn 𝑅 ) ) |
| 39 |
30 38
|
phtpycn |
⊢ ( 𝜑 → ( 𝐴 ( PHtpy ‘ 𝑅 ) ( ( 0 [,] 1 ) × { ( 𝐴 ‘ 0 ) } ) ) ⊆ ( ( II ×t II ) Cn 𝑅 ) ) |
| 40 |
39 6
|
sseldd |
⊢ ( 𝜑 → 𝐺 ∈ ( ( II ×t II ) Cn 𝑅 ) ) |
| 41 |
|
iitop |
⊢ II ∈ Top |
| 42 |
41 41 32 32
|
txunii |
⊢ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) = ∪ ( II ×t II ) |
| 43 |
42 11
|
cnf |
⊢ ( 𝐺 ∈ ( ( II ×t II ) Cn 𝑅 ) → 𝐺 : ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ⟶ ∪ 𝑅 ) |
| 44 |
|
ffn |
⊢ ( 𝐺 : ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ⟶ ∪ 𝑅 → 𝐺 Fn ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) |
| 45 |
40 43 44
|
3syl |
⊢ ( 𝜑 → 𝐺 Fn ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) |
| 46 |
|
fnov |
⊢ ( 𝐺 Fn ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ↔ 𝐺 = ( 𝑥 ∈ ( 0 [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ ( 𝑥 𝐺 𝑦 ) ) ) |
| 47 |
45 46
|
sylib |
⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ ( 0 [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ ( 𝑥 𝐺 𝑦 ) ) ) |
| 48 |
47 40
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 0 [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ ( 𝑥 𝐺 𝑦 ) ) ∈ ( ( II ×t II ) Cn 𝑅 ) ) |
| 49 |
|
tx2cn |
⊢ ( ( 𝑅 ∈ ( TopOn ‘ ∪ 𝑅 ) ∧ 𝑆 ∈ ( TopOn ‘ ∪ 𝑆 ) ) → ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ∈ ( ( 𝑅 ×t 𝑆 ) Cn 𝑆 ) ) |
| 50 |
13 16 49
|
syl2anc |
⊢ ( 𝜑 → ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ∈ ( ( 𝑅 ×t 𝑆 ) Cn 𝑆 ) ) |
| 51 |
|
cnco |
⊢ ( ( 𝐹 ∈ ( II Cn ( 𝑅 ×t 𝑆 ) ) ∧ ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ∈ ( ( 𝑅 ×t 𝑆 ) Cn 𝑆 ) ) → ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ∘ 𝐹 ) ∈ ( II Cn 𝑆 ) ) |
| 52 |
3 50 51
|
syl2anc |
⊢ ( 𝜑 → ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ∘ 𝐹 ) ∈ ( II Cn 𝑆 ) ) |
| 53 |
5 52
|
eqeltrid |
⊢ ( 𝜑 → 𝐵 ∈ ( II Cn 𝑆 ) ) |
| 54 |
|
fconstmpt |
⊢ ( ( 0 [,] 1 ) × { ( 𝐵 ‘ 0 ) } ) = ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( 𝐵 ‘ 0 ) ) |
| 55 |
32 14
|
cnf |
⊢ ( 𝐵 ∈ ( II Cn 𝑆 ) → 𝐵 : ( 0 [,] 1 ) ⟶ ∪ 𝑆 ) |
| 56 |
53 55
|
syl |
⊢ ( 𝜑 → 𝐵 : ( 0 [,] 1 ) ⟶ ∪ 𝑆 ) |
| 57 |
|
ffvelcdm |
⊢ ( ( 𝐵 : ( 0 [,] 1 ) ⟶ ∪ 𝑆 ∧ 0 ∈ ( 0 [,] 1 ) ) → ( 𝐵 ‘ 0 ) ∈ ∪ 𝑆 ) |
| 58 |
56 21 57
|
sylancl |
⊢ ( 𝜑 → ( 𝐵 ‘ 0 ) ∈ ∪ 𝑆 ) |
| 59 |
10 16 58
|
cnmptc |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( 𝐵 ‘ 0 ) ) ∈ ( II Cn 𝑆 ) ) |
| 60 |
54 59
|
eqeltrid |
⊢ ( 𝜑 → ( ( 0 [,] 1 ) × { ( 𝐵 ‘ 0 ) } ) ∈ ( II Cn 𝑆 ) ) |
| 61 |
53 60
|
phtpycn |
⊢ ( 𝜑 → ( 𝐵 ( PHtpy ‘ 𝑆 ) ( ( 0 [,] 1 ) × { ( 𝐵 ‘ 0 ) } ) ) ⊆ ( ( II ×t II ) Cn 𝑆 ) ) |
| 62 |
61 7
|
sseldd |
⊢ ( 𝜑 → 𝐻 ∈ ( ( II ×t II ) Cn 𝑆 ) ) |
| 63 |
42 14
|
cnf |
⊢ ( 𝐻 ∈ ( ( II ×t II ) Cn 𝑆 ) → 𝐻 : ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ⟶ ∪ 𝑆 ) |
| 64 |
|
ffn |
⊢ ( 𝐻 : ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ⟶ ∪ 𝑆 → 𝐻 Fn ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) |
| 65 |
62 63 64
|
3syl |
⊢ ( 𝜑 → 𝐻 Fn ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) |
| 66 |
|
fnov |
⊢ ( 𝐻 Fn ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ↔ 𝐻 = ( 𝑥 ∈ ( 0 [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ ( 𝑥 𝐻 𝑦 ) ) ) |
| 67 |
65 66
|
sylib |
⊢ ( 𝜑 → 𝐻 = ( 𝑥 ∈ ( 0 [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ ( 𝑥 𝐻 𝑦 ) ) ) |
| 68 |
67 62
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 0 [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ ( 𝑥 𝐻 𝑦 ) ) ∈ ( ( II ×t II ) Cn 𝑆 ) ) |
| 69 |
10 10 48 68
|
cnmpt2t |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 0 [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ 〈 ( 𝑥 𝐺 𝑦 ) , ( 𝑥 𝐻 𝑦 ) 〉 ) ∈ ( ( II ×t II ) Cn ( 𝑅 ×t 𝑆 ) ) ) |
| 70 |
30 38
|
phtpyhtpy |
⊢ ( 𝜑 → ( 𝐴 ( PHtpy ‘ 𝑅 ) ( ( 0 [,] 1 ) × { ( 𝐴 ‘ 0 ) } ) ) ⊆ ( 𝐴 ( II Htpy 𝑅 ) ( ( 0 [,] 1 ) × { ( 𝐴 ‘ 0 ) } ) ) ) |
| 71 |
70 6
|
sseldd |
⊢ ( 𝜑 → 𝐺 ∈ ( 𝐴 ( II Htpy 𝑅 ) ( ( 0 [,] 1 ) × { ( 𝐴 ‘ 0 ) } ) ) ) |
| 72 |
10 30 38 71
|
htpyi |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( 𝑠 𝐺 0 ) = ( 𝐴 ‘ 𝑠 ) ∧ ( 𝑠 𝐺 1 ) = ( ( ( 0 [,] 1 ) × { ( 𝐴 ‘ 0 ) } ) ‘ 𝑠 ) ) ) |
| 73 |
72
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝑠 𝐺 0 ) = ( 𝐴 ‘ 𝑠 ) ) |
| 74 |
4
|
fveq1i |
⊢ ( 𝐴 ‘ 𝑠 ) = ( ( ( 1st ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ∘ 𝐹 ) ‘ 𝑠 ) |
| 75 |
|
fvco3 |
⊢ ( ( 𝐹 : ( 0 [,] 1 ) ⟶ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( ( 1st ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ∘ 𝐹 ) ‘ 𝑠 ) = ( ( 1st ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ‘ ( 𝐹 ‘ 𝑠 ) ) ) |
| 76 |
20 75
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( ( 1st ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ∘ 𝐹 ) ‘ 𝑠 ) = ( ( 1st ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ‘ ( 𝐹 ‘ 𝑠 ) ) ) |
| 77 |
74 76
|
eqtrid |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝐴 ‘ 𝑠 ) = ( ( 1st ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ‘ ( 𝐹 ‘ 𝑠 ) ) ) |
| 78 |
|
ffvelcdm |
⊢ ( ( 𝐹 : ( 0 [,] 1 ) ⟶ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝐹 ‘ 𝑠 ) ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) |
| 79 |
20 78
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝐹 ‘ 𝑠 ) ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) |
| 80 |
|
fvres |
⊢ ( ( 𝐹 ‘ 𝑠 ) ∈ ( ∪ 𝑅 × ∪ 𝑆 ) → ( ( 1st ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ‘ ( 𝐹 ‘ 𝑠 ) ) = ( 1st ‘ ( 𝐹 ‘ 𝑠 ) ) ) |
| 81 |
79 80
|
syl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( 1st ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ‘ ( 𝐹 ‘ 𝑠 ) ) = ( 1st ‘ ( 𝐹 ‘ 𝑠 ) ) ) |
| 82 |
73 77 81
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝑠 𝐺 0 ) = ( 1st ‘ ( 𝐹 ‘ 𝑠 ) ) ) |
| 83 |
53 60
|
phtpyhtpy |
⊢ ( 𝜑 → ( 𝐵 ( PHtpy ‘ 𝑆 ) ( ( 0 [,] 1 ) × { ( 𝐵 ‘ 0 ) } ) ) ⊆ ( 𝐵 ( II Htpy 𝑆 ) ( ( 0 [,] 1 ) × { ( 𝐵 ‘ 0 ) } ) ) ) |
| 84 |
83 7
|
sseldd |
⊢ ( 𝜑 → 𝐻 ∈ ( 𝐵 ( II Htpy 𝑆 ) ( ( 0 [,] 1 ) × { ( 𝐵 ‘ 0 ) } ) ) ) |
| 85 |
10 53 60 84
|
htpyi |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( 𝑠 𝐻 0 ) = ( 𝐵 ‘ 𝑠 ) ∧ ( 𝑠 𝐻 1 ) = ( ( ( 0 [,] 1 ) × { ( 𝐵 ‘ 0 ) } ) ‘ 𝑠 ) ) ) |
| 86 |
85
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝑠 𝐻 0 ) = ( 𝐵 ‘ 𝑠 ) ) |
| 87 |
5
|
fveq1i |
⊢ ( 𝐵 ‘ 𝑠 ) = ( ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ∘ 𝐹 ) ‘ 𝑠 ) |
| 88 |
|
fvco3 |
⊢ ( ( 𝐹 : ( 0 [,] 1 ) ⟶ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ∘ 𝐹 ) ‘ 𝑠 ) = ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ‘ ( 𝐹 ‘ 𝑠 ) ) ) |
| 89 |
20 88
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ∘ 𝐹 ) ‘ 𝑠 ) = ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ‘ ( 𝐹 ‘ 𝑠 ) ) ) |
| 90 |
87 89
|
eqtrid |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝐵 ‘ 𝑠 ) = ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ‘ ( 𝐹 ‘ 𝑠 ) ) ) |
| 91 |
|
fvres |
⊢ ( ( 𝐹 ‘ 𝑠 ) ∈ ( ∪ 𝑅 × ∪ 𝑆 ) → ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ‘ ( 𝐹 ‘ 𝑠 ) ) = ( 2nd ‘ ( 𝐹 ‘ 𝑠 ) ) ) |
| 92 |
79 91
|
syl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ‘ ( 𝐹 ‘ 𝑠 ) ) = ( 2nd ‘ ( 𝐹 ‘ 𝑠 ) ) ) |
| 93 |
86 90 92
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝑠 𝐻 0 ) = ( 2nd ‘ ( 𝐹 ‘ 𝑠 ) ) ) |
| 94 |
82 93
|
opeq12d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → 〈 ( 𝑠 𝐺 0 ) , ( 𝑠 𝐻 0 ) 〉 = 〈 ( 1st ‘ ( 𝐹 ‘ 𝑠 ) ) , ( 2nd ‘ ( 𝐹 ‘ 𝑠 ) ) 〉 ) |
| 95 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → 𝑠 ∈ ( 0 [,] 1 ) ) |
| 96 |
|
oveq12 |
⊢ ( ( 𝑥 = 𝑠 ∧ 𝑦 = 0 ) → ( 𝑥 𝐺 𝑦 ) = ( 𝑠 𝐺 0 ) ) |
| 97 |
|
oveq12 |
⊢ ( ( 𝑥 = 𝑠 ∧ 𝑦 = 0 ) → ( 𝑥 𝐻 𝑦 ) = ( 𝑠 𝐻 0 ) ) |
| 98 |
96 97
|
opeq12d |
⊢ ( ( 𝑥 = 𝑠 ∧ 𝑦 = 0 ) → 〈 ( 𝑥 𝐺 𝑦 ) , ( 𝑥 𝐻 𝑦 ) 〉 = 〈 ( 𝑠 𝐺 0 ) , ( 𝑠 𝐻 0 ) 〉 ) |
| 99 |
|
eqid |
⊢ ( 𝑥 ∈ ( 0 [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ 〈 ( 𝑥 𝐺 𝑦 ) , ( 𝑥 𝐻 𝑦 ) 〉 ) = ( 𝑥 ∈ ( 0 [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ 〈 ( 𝑥 𝐺 𝑦 ) , ( 𝑥 𝐻 𝑦 ) 〉 ) |
| 100 |
|
opex |
⊢ 〈 ( 𝑠 𝐺 0 ) , ( 𝑠 𝐻 0 ) 〉 ∈ V |
| 101 |
98 99 100
|
ovmpoa |
⊢ ( ( 𝑠 ∈ ( 0 [,] 1 ) ∧ 0 ∈ ( 0 [,] 1 ) ) → ( 𝑠 ( 𝑥 ∈ ( 0 [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ 〈 ( 𝑥 𝐺 𝑦 ) , ( 𝑥 𝐻 𝑦 ) 〉 ) 0 ) = 〈 ( 𝑠 𝐺 0 ) , ( 𝑠 𝐻 0 ) 〉 ) |
| 102 |
95 21 101
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝑠 ( 𝑥 ∈ ( 0 [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ 〈 ( 𝑥 𝐺 𝑦 ) , ( 𝑥 𝐻 𝑦 ) 〉 ) 0 ) = 〈 ( 𝑠 𝐺 0 ) , ( 𝑠 𝐻 0 ) 〉 ) |
| 103 |
|
1st2nd2 |
⊢ ( ( 𝐹 ‘ 𝑠 ) ∈ ( ∪ 𝑅 × ∪ 𝑆 ) → ( 𝐹 ‘ 𝑠 ) = 〈 ( 1st ‘ ( 𝐹 ‘ 𝑠 ) ) , ( 2nd ‘ ( 𝐹 ‘ 𝑠 ) ) 〉 ) |
| 104 |
79 103
|
syl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝐹 ‘ 𝑠 ) = 〈 ( 1st ‘ ( 𝐹 ‘ 𝑠 ) ) , ( 2nd ‘ ( 𝐹 ‘ 𝑠 ) ) 〉 ) |
| 105 |
94 102 104
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝑠 ( 𝑥 ∈ ( 0 [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ 〈 ( 𝑥 𝐺 𝑦 ) , ( 𝑥 𝐻 𝑦 ) 〉 ) 0 ) = ( 𝐹 ‘ 𝑠 ) ) |
| 106 |
72
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝑠 𝐺 1 ) = ( ( ( 0 [,] 1 ) × { ( 𝐴 ‘ 0 ) } ) ‘ 𝑠 ) ) |
| 107 |
|
fvex |
⊢ ( 𝐴 ‘ 0 ) ∈ V |
| 108 |
107
|
fvconst2 |
⊢ ( 𝑠 ∈ ( 0 [,] 1 ) → ( ( ( 0 [,] 1 ) × { ( 𝐴 ‘ 0 ) } ) ‘ 𝑠 ) = ( 𝐴 ‘ 0 ) ) |
| 109 |
108
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( ( 0 [,] 1 ) × { ( 𝐴 ‘ 0 ) } ) ‘ 𝑠 ) = ( 𝐴 ‘ 0 ) ) |
| 110 |
4
|
fveq1i |
⊢ ( 𝐴 ‘ 0 ) = ( ( ( 1st ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ∘ 𝐹 ) ‘ 0 ) |
| 111 |
|
fvco3 |
⊢ ( ( 𝐹 : ( 0 [,] 1 ) ⟶ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 0 ∈ ( 0 [,] 1 ) ) → ( ( ( 1st ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ∘ 𝐹 ) ‘ 0 ) = ( ( 1st ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ‘ ( 𝐹 ‘ 0 ) ) ) |
| 112 |
20 21 111
|
sylancl |
⊢ ( 𝜑 → ( ( ( 1st ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ∘ 𝐹 ) ‘ 0 ) = ( ( 1st ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ‘ ( 𝐹 ‘ 0 ) ) ) |
| 113 |
|
fvres |
⊢ ( ( 𝐹 ‘ 0 ) ∈ ( ∪ 𝑅 × ∪ 𝑆 ) → ( ( 1st ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ‘ ( 𝐹 ‘ 0 ) ) = ( 1st ‘ ( 𝐹 ‘ 0 ) ) ) |
| 114 |
23 113
|
syl |
⊢ ( 𝜑 → ( ( 1st ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ‘ ( 𝐹 ‘ 0 ) ) = ( 1st ‘ ( 𝐹 ‘ 0 ) ) ) |
| 115 |
112 114
|
eqtrd |
⊢ ( 𝜑 → ( ( ( 1st ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ∘ 𝐹 ) ‘ 0 ) = ( 1st ‘ ( 𝐹 ‘ 0 ) ) ) |
| 116 |
110 115
|
eqtrid |
⊢ ( 𝜑 → ( 𝐴 ‘ 0 ) = ( 1st ‘ ( 𝐹 ‘ 0 ) ) ) |
| 117 |
116
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝐴 ‘ 0 ) = ( 1st ‘ ( 𝐹 ‘ 0 ) ) ) |
| 118 |
106 109 117
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝑠 𝐺 1 ) = ( 1st ‘ ( 𝐹 ‘ 0 ) ) ) |
| 119 |
85
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝑠 𝐻 1 ) = ( ( ( 0 [,] 1 ) × { ( 𝐵 ‘ 0 ) } ) ‘ 𝑠 ) ) |
| 120 |
|
fvex |
⊢ ( 𝐵 ‘ 0 ) ∈ V |
| 121 |
120
|
fvconst2 |
⊢ ( 𝑠 ∈ ( 0 [,] 1 ) → ( ( ( 0 [,] 1 ) × { ( 𝐵 ‘ 0 ) } ) ‘ 𝑠 ) = ( 𝐵 ‘ 0 ) ) |
| 122 |
121
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( ( 0 [,] 1 ) × { ( 𝐵 ‘ 0 ) } ) ‘ 𝑠 ) = ( 𝐵 ‘ 0 ) ) |
| 123 |
5
|
fveq1i |
⊢ ( 𝐵 ‘ 0 ) = ( ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ∘ 𝐹 ) ‘ 0 ) |
| 124 |
|
fvco3 |
⊢ ( ( 𝐹 : ( 0 [,] 1 ) ⟶ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 0 ∈ ( 0 [,] 1 ) ) → ( ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ∘ 𝐹 ) ‘ 0 ) = ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ‘ ( 𝐹 ‘ 0 ) ) ) |
| 125 |
20 21 124
|
sylancl |
⊢ ( 𝜑 → ( ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ∘ 𝐹 ) ‘ 0 ) = ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ‘ ( 𝐹 ‘ 0 ) ) ) |
| 126 |
|
fvres |
⊢ ( ( 𝐹 ‘ 0 ) ∈ ( ∪ 𝑅 × ∪ 𝑆 ) → ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ‘ ( 𝐹 ‘ 0 ) ) = ( 2nd ‘ ( 𝐹 ‘ 0 ) ) ) |
| 127 |
23 126
|
syl |
⊢ ( 𝜑 → ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ‘ ( 𝐹 ‘ 0 ) ) = ( 2nd ‘ ( 𝐹 ‘ 0 ) ) ) |
| 128 |
125 127
|
eqtrd |
⊢ ( 𝜑 → ( ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ∘ 𝐹 ) ‘ 0 ) = ( 2nd ‘ ( 𝐹 ‘ 0 ) ) ) |
| 129 |
123 128
|
eqtrid |
⊢ ( 𝜑 → ( 𝐵 ‘ 0 ) = ( 2nd ‘ ( 𝐹 ‘ 0 ) ) ) |
| 130 |
129
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝐵 ‘ 0 ) = ( 2nd ‘ ( 𝐹 ‘ 0 ) ) ) |
| 131 |
119 122 130
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝑠 𝐻 1 ) = ( 2nd ‘ ( 𝐹 ‘ 0 ) ) ) |
| 132 |
118 131
|
opeq12d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → 〈 ( 𝑠 𝐺 1 ) , ( 𝑠 𝐻 1 ) 〉 = 〈 ( 1st ‘ ( 𝐹 ‘ 0 ) ) , ( 2nd ‘ ( 𝐹 ‘ 0 ) ) 〉 ) |
| 133 |
|
1elunit |
⊢ 1 ∈ ( 0 [,] 1 ) |
| 134 |
|
oveq12 |
⊢ ( ( 𝑥 = 𝑠 ∧ 𝑦 = 1 ) → ( 𝑥 𝐺 𝑦 ) = ( 𝑠 𝐺 1 ) ) |
| 135 |
|
oveq12 |
⊢ ( ( 𝑥 = 𝑠 ∧ 𝑦 = 1 ) → ( 𝑥 𝐻 𝑦 ) = ( 𝑠 𝐻 1 ) ) |
| 136 |
134 135
|
opeq12d |
⊢ ( ( 𝑥 = 𝑠 ∧ 𝑦 = 1 ) → 〈 ( 𝑥 𝐺 𝑦 ) , ( 𝑥 𝐻 𝑦 ) 〉 = 〈 ( 𝑠 𝐺 1 ) , ( 𝑠 𝐻 1 ) 〉 ) |
| 137 |
|
opex |
⊢ 〈 ( 𝑠 𝐺 1 ) , ( 𝑠 𝐻 1 ) 〉 ∈ V |
| 138 |
136 99 137
|
ovmpoa |
⊢ ( ( 𝑠 ∈ ( 0 [,] 1 ) ∧ 1 ∈ ( 0 [,] 1 ) ) → ( 𝑠 ( 𝑥 ∈ ( 0 [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ 〈 ( 𝑥 𝐺 𝑦 ) , ( 𝑥 𝐻 𝑦 ) 〉 ) 1 ) = 〈 ( 𝑠 𝐺 1 ) , ( 𝑠 𝐻 1 ) 〉 ) |
| 139 |
95 133 138
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝑠 ( 𝑥 ∈ ( 0 [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ 〈 ( 𝑥 𝐺 𝑦 ) , ( 𝑥 𝐻 𝑦 ) 〉 ) 1 ) = 〈 ( 𝑠 𝐺 1 ) , ( 𝑠 𝐻 1 ) 〉 ) |
| 140 |
|
fvex |
⊢ ( 𝐹 ‘ 0 ) ∈ V |
| 141 |
140
|
fvconst2 |
⊢ ( 𝑠 ∈ ( 0 [,] 1 ) → ( ( ( 0 [,] 1 ) × { ( 𝐹 ‘ 0 ) } ) ‘ 𝑠 ) = ( 𝐹 ‘ 0 ) ) |
| 142 |
141
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( ( 0 [,] 1 ) × { ( 𝐹 ‘ 0 ) } ) ‘ 𝑠 ) = ( 𝐹 ‘ 0 ) ) |
| 143 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝐹 ‘ 0 ) ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) |
| 144 |
|
1st2nd2 |
⊢ ( ( 𝐹 ‘ 0 ) ∈ ( ∪ 𝑅 × ∪ 𝑆 ) → ( 𝐹 ‘ 0 ) = 〈 ( 1st ‘ ( 𝐹 ‘ 0 ) ) , ( 2nd ‘ ( 𝐹 ‘ 0 ) ) 〉 ) |
| 145 |
143 144
|
syl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝐹 ‘ 0 ) = 〈 ( 1st ‘ ( 𝐹 ‘ 0 ) ) , ( 2nd ‘ ( 𝐹 ‘ 0 ) ) 〉 ) |
| 146 |
142 145
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( ( 0 [,] 1 ) × { ( 𝐹 ‘ 0 ) } ) ‘ 𝑠 ) = 〈 ( 1st ‘ ( 𝐹 ‘ 0 ) ) , ( 2nd ‘ ( 𝐹 ‘ 0 ) ) 〉 ) |
| 147 |
132 139 146
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝑠 ( 𝑥 ∈ ( 0 [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ 〈 ( 𝑥 𝐺 𝑦 ) , ( 𝑥 𝐻 𝑦 ) 〉 ) 1 ) = ( ( ( 0 [,] 1 ) × { ( 𝐹 ‘ 0 ) } ) ‘ 𝑠 ) ) |
| 148 |
30 38 6
|
phtpyi |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( 0 𝐺 𝑠 ) = ( 𝐴 ‘ 0 ) ∧ ( 1 𝐺 𝑠 ) = ( 𝐴 ‘ 1 ) ) ) |
| 149 |
148
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 0 𝐺 𝑠 ) = ( 𝐴 ‘ 0 ) ) |
| 150 |
149 117
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 0 𝐺 𝑠 ) = ( 1st ‘ ( 𝐹 ‘ 0 ) ) ) |
| 151 |
53 60 7
|
phtpyi |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( 0 𝐻 𝑠 ) = ( 𝐵 ‘ 0 ) ∧ ( 1 𝐻 𝑠 ) = ( 𝐵 ‘ 1 ) ) ) |
| 152 |
151
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 0 𝐻 𝑠 ) = ( 𝐵 ‘ 0 ) ) |
| 153 |
152 130
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 0 𝐻 𝑠 ) = ( 2nd ‘ ( 𝐹 ‘ 0 ) ) ) |
| 154 |
150 153
|
opeq12d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → 〈 ( 0 𝐺 𝑠 ) , ( 0 𝐻 𝑠 ) 〉 = 〈 ( 1st ‘ ( 𝐹 ‘ 0 ) ) , ( 2nd ‘ ( 𝐹 ‘ 0 ) ) 〉 ) |
| 155 |
|
oveq12 |
⊢ ( ( 𝑥 = 0 ∧ 𝑦 = 𝑠 ) → ( 𝑥 𝐺 𝑦 ) = ( 0 𝐺 𝑠 ) ) |
| 156 |
|
oveq12 |
⊢ ( ( 𝑥 = 0 ∧ 𝑦 = 𝑠 ) → ( 𝑥 𝐻 𝑦 ) = ( 0 𝐻 𝑠 ) ) |
| 157 |
155 156
|
opeq12d |
⊢ ( ( 𝑥 = 0 ∧ 𝑦 = 𝑠 ) → 〈 ( 𝑥 𝐺 𝑦 ) , ( 𝑥 𝐻 𝑦 ) 〉 = 〈 ( 0 𝐺 𝑠 ) , ( 0 𝐻 𝑠 ) 〉 ) |
| 158 |
|
opex |
⊢ 〈 ( 0 𝐺 𝑠 ) , ( 0 𝐻 𝑠 ) 〉 ∈ V |
| 159 |
157 99 158
|
ovmpoa |
⊢ ( ( 0 ∈ ( 0 [,] 1 ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 0 ( 𝑥 ∈ ( 0 [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ 〈 ( 𝑥 𝐺 𝑦 ) , ( 𝑥 𝐻 𝑦 ) 〉 ) 𝑠 ) = 〈 ( 0 𝐺 𝑠 ) , ( 0 𝐻 𝑠 ) 〉 ) |
| 160 |
21 95 159
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 0 ( 𝑥 ∈ ( 0 [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ 〈 ( 𝑥 𝐺 𝑦 ) , ( 𝑥 𝐻 𝑦 ) 〉 ) 𝑠 ) = 〈 ( 0 𝐺 𝑠 ) , ( 0 𝐻 𝑠 ) 〉 ) |
| 161 |
154 160 145
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 0 ( 𝑥 ∈ ( 0 [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ 〈 ( 𝑥 𝐺 𝑦 ) , ( 𝑥 𝐻 𝑦 ) 〉 ) 𝑠 ) = ( 𝐹 ‘ 0 ) ) |
| 162 |
148
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 1 𝐺 𝑠 ) = ( 𝐴 ‘ 1 ) ) |
| 163 |
4
|
fveq1i |
⊢ ( 𝐴 ‘ 1 ) = ( ( ( 1st ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ∘ 𝐹 ) ‘ 1 ) |
| 164 |
|
fvco3 |
⊢ ( ( 𝐹 : ( 0 [,] 1 ) ⟶ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 1 ∈ ( 0 [,] 1 ) ) → ( ( ( 1st ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ∘ 𝐹 ) ‘ 1 ) = ( ( 1st ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ‘ ( 𝐹 ‘ 1 ) ) ) |
| 165 |
20 133 164
|
sylancl |
⊢ ( 𝜑 → ( ( ( 1st ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ∘ 𝐹 ) ‘ 1 ) = ( ( 1st ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ‘ ( 𝐹 ‘ 1 ) ) ) |
| 166 |
163 165
|
eqtrid |
⊢ ( 𝜑 → ( 𝐴 ‘ 1 ) = ( ( 1st ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ‘ ( 𝐹 ‘ 1 ) ) ) |
| 167 |
|
ffvelcdm |
⊢ ( ( 𝐹 : ( 0 [,] 1 ) ⟶ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 1 ∈ ( 0 [,] 1 ) ) → ( 𝐹 ‘ 1 ) ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) |
| 168 |
20 133 167
|
sylancl |
⊢ ( 𝜑 → ( 𝐹 ‘ 1 ) ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) |
| 169 |
|
fvres |
⊢ ( ( 𝐹 ‘ 1 ) ∈ ( ∪ 𝑅 × ∪ 𝑆 ) → ( ( 1st ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ‘ ( 𝐹 ‘ 1 ) ) = ( 1st ‘ ( 𝐹 ‘ 1 ) ) ) |
| 170 |
168 169
|
syl |
⊢ ( 𝜑 → ( ( 1st ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ‘ ( 𝐹 ‘ 1 ) ) = ( 1st ‘ ( 𝐹 ‘ 1 ) ) ) |
| 171 |
166 170
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 ‘ 1 ) = ( 1st ‘ ( 𝐹 ‘ 1 ) ) ) |
| 172 |
171
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝐴 ‘ 1 ) = ( 1st ‘ ( 𝐹 ‘ 1 ) ) ) |
| 173 |
162 172
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 1 𝐺 𝑠 ) = ( 1st ‘ ( 𝐹 ‘ 1 ) ) ) |
| 174 |
151
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 1 𝐻 𝑠 ) = ( 𝐵 ‘ 1 ) ) |
| 175 |
5
|
fveq1i |
⊢ ( 𝐵 ‘ 1 ) = ( ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ∘ 𝐹 ) ‘ 1 ) |
| 176 |
|
fvco3 |
⊢ ( ( 𝐹 : ( 0 [,] 1 ) ⟶ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 1 ∈ ( 0 [,] 1 ) ) → ( ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ∘ 𝐹 ) ‘ 1 ) = ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ‘ ( 𝐹 ‘ 1 ) ) ) |
| 177 |
20 133 176
|
sylancl |
⊢ ( 𝜑 → ( ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ∘ 𝐹 ) ‘ 1 ) = ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ‘ ( 𝐹 ‘ 1 ) ) ) |
| 178 |
175 177
|
eqtrid |
⊢ ( 𝜑 → ( 𝐵 ‘ 1 ) = ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ‘ ( 𝐹 ‘ 1 ) ) ) |
| 179 |
|
fvres |
⊢ ( ( 𝐹 ‘ 1 ) ∈ ( ∪ 𝑅 × ∪ 𝑆 ) → ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ‘ ( 𝐹 ‘ 1 ) ) = ( 2nd ‘ ( 𝐹 ‘ 1 ) ) ) |
| 180 |
168 179
|
syl |
⊢ ( 𝜑 → ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ‘ ( 𝐹 ‘ 1 ) ) = ( 2nd ‘ ( 𝐹 ‘ 1 ) ) ) |
| 181 |
178 180
|
eqtrd |
⊢ ( 𝜑 → ( 𝐵 ‘ 1 ) = ( 2nd ‘ ( 𝐹 ‘ 1 ) ) ) |
| 182 |
181
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝐵 ‘ 1 ) = ( 2nd ‘ ( 𝐹 ‘ 1 ) ) ) |
| 183 |
174 182
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 1 𝐻 𝑠 ) = ( 2nd ‘ ( 𝐹 ‘ 1 ) ) ) |
| 184 |
173 183
|
opeq12d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → 〈 ( 1 𝐺 𝑠 ) , ( 1 𝐻 𝑠 ) 〉 = 〈 ( 1st ‘ ( 𝐹 ‘ 1 ) ) , ( 2nd ‘ ( 𝐹 ‘ 1 ) ) 〉 ) |
| 185 |
|
oveq12 |
⊢ ( ( 𝑥 = 1 ∧ 𝑦 = 𝑠 ) → ( 𝑥 𝐺 𝑦 ) = ( 1 𝐺 𝑠 ) ) |
| 186 |
|
oveq12 |
⊢ ( ( 𝑥 = 1 ∧ 𝑦 = 𝑠 ) → ( 𝑥 𝐻 𝑦 ) = ( 1 𝐻 𝑠 ) ) |
| 187 |
185 186
|
opeq12d |
⊢ ( ( 𝑥 = 1 ∧ 𝑦 = 𝑠 ) → 〈 ( 𝑥 𝐺 𝑦 ) , ( 𝑥 𝐻 𝑦 ) 〉 = 〈 ( 1 𝐺 𝑠 ) , ( 1 𝐻 𝑠 ) 〉 ) |
| 188 |
|
opex |
⊢ 〈 ( 1 𝐺 𝑠 ) , ( 1 𝐻 𝑠 ) 〉 ∈ V |
| 189 |
187 99 188
|
ovmpoa |
⊢ ( ( 1 ∈ ( 0 [,] 1 ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 1 ( 𝑥 ∈ ( 0 [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ 〈 ( 𝑥 𝐺 𝑦 ) , ( 𝑥 𝐻 𝑦 ) 〉 ) 𝑠 ) = 〈 ( 1 𝐺 𝑠 ) , ( 1 𝐻 𝑠 ) 〉 ) |
| 190 |
133 95 189
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 1 ( 𝑥 ∈ ( 0 [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ 〈 ( 𝑥 𝐺 𝑦 ) , ( 𝑥 𝐻 𝑦 ) 〉 ) 𝑠 ) = 〈 ( 1 𝐺 𝑠 ) , ( 1 𝐻 𝑠 ) 〉 ) |
| 191 |
168
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝐹 ‘ 1 ) ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) |
| 192 |
|
1st2nd2 |
⊢ ( ( 𝐹 ‘ 1 ) ∈ ( ∪ 𝑅 × ∪ 𝑆 ) → ( 𝐹 ‘ 1 ) = 〈 ( 1st ‘ ( 𝐹 ‘ 1 ) ) , ( 2nd ‘ ( 𝐹 ‘ 1 ) ) 〉 ) |
| 193 |
191 192
|
syl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝐹 ‘ 1 ) = 〈 ( 1st ‘ ( 𝐹 ‘ 1 ) ) , ( 2nd ‘ ( 𝐹 ‘ 1 ) ) 〉 ) |
| 194 |
184 190 193
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 1 ( 𝑥 ∈ ( 0 [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ 〈 ( 𝑥 𝐺 𝑦 ) , ( 𝑥 𝐻 𝑦 ) 〉 ) 𝑠 ) = ( 𝐹 ‘ 1 ) ) |
| 195 |
3 25 69 105 147 161 194
|
isphtpy2d |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 0 [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ 〈 ( 𝑥 𝐺 𝑦 ) , ( 𝑥 𝐻 𝑦 ) 〉 ) ∈ ( 𝐹 ( PHtpy ‘ ( 𝑅 ×t 𝑆 ) ) ( ( 0 [,] 1 ) × { ( 𝐹 ‘ 0 ) } ) ) ) |
| 196 |
195
|
ne0d |
⊢ ( 𝜑 → ( 𝐹 ( PHtpy ‘ ( 𝑅 ×t 𝑆 ) ) ( ( 0 [,] 1 ) × { ( 𝐹 ‘ 0 ) } ) ) ≠ ∅ ) |
| 197 |
|
isphtpc |
⊢ ( 𝐹 ( ≃ph ‘ ( 𝑅 ×t 𝑆 ) ) ( ( 0 [,] 1 ) × { ( 𝐹 ‘ 0 ) } ) ↔ ( 𝐹 ∈ ( II Cn ( 𝑅 ×t 𝑆 ) ) ∧ ( ( 0 [,] 1 ) × { ( 𝐹 ‘ 0 ) } ) ∈ ( II Cn ( 𝑅 ×t 𝑆 ) ) ∧ ( 𝐹 ( PHtpy ‘ ( 𝑅 ×t 𝑆 ) ) ( ( 0 [,] 1 ) × { ( 𝐹 ‘ 0 ) } ) ) ≠ ∅ ) ) |
| 198 |
3 25 196 197
|
syl3anbrc |
⊢ ( 𝜑 → 𝐹 ( ≃ph ‘ ( 𝑅 ×t 𝑆 ) ) ( ( 0 [,] 1 ) × { ( 𝐹 ‘ 0 ) } ) ) |