| Step | Hyp | Ref | Expression | 
						
							| 1 |  | txsconn.1 | ⊢ ( 𝜑  →  𝑅  ∈  Top ) | 
						
							| 2 |  | txsconn.2 | ⊢ ( 𝜑  →  𝑆  ∈  Top ) | 
						
							| 3 |  | txsconn.3 | ⊢ ( 𝜑  →  𝐹  ∈  ( II  Cn  ( 𝑅  ×t  𝑆 ) ) ) | 
						
							| 4 |  | txsconn.5 | ⊢ 𝐴  =  ( ( 1st   ↾  ( ∪  𝑅  ×  ∪  𝑆 ) )  ∘  𝐹 ) | 
						
							| 5 |  | txsconn.6 | ⊢ 𝐵  =  ( ( 2nd   ↾  ( ∪  𝑅  ×  ∪  𝑆 ) )  ∘  𝐹 ) | 
						
							| 6 |  | txsconn.7 | ⊢ ( 𝜑  →  𝐺  ∈  ( 𝐴 ( PHtpy ‘ 𝑅 ) ( ( 0 [,] 1 )  ×  { ( 𝐴 ‘ 0 ) } ) ) ) | 
						
							| 7 |  | txsconn.8 | ⊢ ( 𝜑  →  𝐻  ∈  ( 𝐵 ( PHtpy ‘ 𝑆 ) ( ( 0 [,] 1 )  ×  { ( 𝐵 ‘ 0 ) } ) ) ) | 
						
							| 8 |  | fconstmpt | ⊢ ( ( 0 [,] 1 )  ×  { ( 𝐹 ‘ 0 ) } )  =  ( 𝑥  ∈  ( 0 [,] 1 )  ↦  ( 𝐹 ‘ 0 ) ) | 
						
							| 9 |  | iitopon | ⊢ II  ∈  ( TopOn ‘ ( 0 [,] 1 ) ) | 
						
							| 10 | 9 | a1i | ⊢ ( 𝜑  →  II  ∈  ( TopOn ‘ ( 0 [,] 1 ) ) ) | 
						
							| 11 |  | eqid | ⊢ ∪  𝑅  =  ∪  𝑅 | 
						
							| 12 | 11 | toptopon | ⊢ ( 𝑅  ∈  Top  ↔  𝑅  ∈  ( TopOn ‘ ∪  𝑅 ) ) | 
						
							| 13 | 1 12 | sylib | ⊢ ( 𝜑  →  𝑅  ∈  ( TopOn ‘ ∪  𝑅 ) ) | 
						
							| 14 |  | eqid | ⊢ ∪  𝑆  =  ∪  𝑆 | 
						
							| 15 | 14 | toptopon | ⊢ ( 𝑆  ∈  Top  ↔  𝑆  ∈  ( TopOn ‘ ∪  𝑆 ) ) | 
						
							| 16 | 2 15 | sylib | ⊢ ( 𝜑  →  𝑆  ∈  ( TopOn ‘ ∪  𝑆 ) ) | 
						
							| 17 |  | txtopon | ⊢ ( ( 𝑅  ∈  ( TopOn ‘ ∪  𝑅 )  ∧  𝑆  ∈  ( TopOn ‘ ∪  𝑆 ) )  →  ( 𝑅  ×t  𝑆 )  ∈  ( TopOn ‘ ( ∪  𝑅  ×  ∪  𝑆 ) ) ) | 
						
							| 18 | 13 16 17 | syl2anc | ⊢ ( 𝜑  →  ( 𝑅  ×t  𝑆 )  ∈  ( TopOn ‘ ( ∪  𝑅  ×  ∪  𝑆 ) ) ) | 
						
							| 19 |  | cnf2 | ⊢ ( ( II  ∈  ( TopOn ‘ ( 0 [,] 1 ) )  ∧  ( 𝑅  ×t  𝑆 )  ∈  ( TopOn ‘ ( ∪  𝑅  ×  ∪  𝑆 ) )  ∧  𝐹  ∈  ( II  Cn  ( 𝑅  ×t  𝑆 ) ) )  →  𝐹 : ( 0 [,] 1 ) ⟶ ( ∪  𝑅  ×  ∪  𝑆 ) ) | 
						
							| 20 | 10 18 3 19 | syl3anc | ⊢ ( 𝜑  →  𝐹 : ( 0 [,] 1 ) ⟶ ( ∪  𝑅  ×  ∪  𝑆 ) ) | 
						
							| 21 |  | 0elunit | ⊢ 0  ∈  ( 0 [,] 1 ) | 
						
							| 22 |  | ffvelcdm | ⊢ ( ( 𝐹 : ( 0 [,] 1 ) ⟶ ( ∪  𝑅  ×  ∪  𝑆 )  ∧  0  ∈  ( 0 [,] 1 ) )  →  ( 𝐹 ‘ 0 )  ∈  ( ∪  𝑅  ×  ∪  𝑆 ) ) | 
						
							| 23 | 20 21 22 | sylancl | ⊢ ( 𝜑  →  ( 𝐹 ‘ 0 )  ∈  ( ∪  𝑅  ×  ∪  𝑆 ) ) | 
						
							| 24 | 10 18 23 | cnmptc | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 0 [,] 1 )  ↦  ( 𝐹 ‘ 0 ) )  ∈  ( II  Cn  ( 𝑅  ×t  𝑆 ) ) ) | 
						
							| 25 | 8 24 | eqeltrid | ⊢ ( 𝜑  →  ( ( 0 [,] 1 )  ×  { ( 𝐹 ‘ 0 ) } )  ∈  ( II  Cn  ( 𝑅  ×t  𝑆 ) ) ) | 
						
							| 26 |  | tx1cn | ⊢ ( ( 𝑅  ∈  ( TopOn ‘ ∪  𝑅 )  ∧  𝑆  ∈  ( TopOn ‘ ∪  𝑆 ) )  →  ( 1st   ↾  ( ∪  𝑅  ×  ∪  𝑆 ) )  ∈  ( ( 𝑅  ×t  𝑆 )  Cn  𝑅 ) ) | 
						
							| 27 | 13 16 26 | syl2anc | ⊢ ( 𝜑  →  ( 1st   ↾  ( ∪  𝑅  ×  ∪  𝑆 ) )  ∈  ( ( 𝑅  ×t  𝑆 )  Cn  𝑅 ) ) | 
						
							| 28 |  | cnco | ⊢ ( ( 𝐹  ∈  ( II  Cn  ( 𝑅  ×t  𝑆 ) )  ∧  ( 1st   ↾  ( ∪  𝑅  ×  ∪  𝑆 ) )  ∈  ( ( 𝑅  ×t  𝑆 )  Cn  𝑅 ) )  →  ( ( 1st   ↾  ( ∪  𝑅  ×  ∪  𝑆 ) )  ∘  𝐹 )  ∈  ( II  Cn  𝑅 ) ) | 
						
							| 29 | 3 27 28 | syl2anc | ⊢ ( 𝜑  →  ( ( 1st   ↾  ( ∪  𝑅  ×  ∪  𝑆 ) )  ∘  𝐹 )  ∈  ( II  Cn  𝑅 ) ) | 
						
							| 30 | 4 29 | eqeltrid | ⊢ ( 𝜑  →  𝐴  ∈  ( II  Cn  𝑅 ) ) | 
						
							| 31 |  | fconstmpt | ⊢ ( ( 0 [,] 1 )  ×  { ( 𝐴 ‘ 0 ) } )  =  ( 𝑥  ∈  ( 0 [,] 1 )  ↦  ( 𝐴 ‘ 0 ) ) | 
						
							| 32 |  | iiuni | ⊢ ( 0 [,] 1 )  =  ∪  II | 
						
							| 33 | 32 11 | cnf | ⊢ ( 𝐴  ∈  ( II  Cn  𝑅 )  →  𝐴 : ( 0 [,] 1 ) ⟶ ∪  𝑅 ) | 
						
							| 34 | 30 33 | syl | ⊢ ( 𝜑  →  𝐴 : ( 0 [,] 1 ) ⟶ ∪  𝑅 ) | 
						
							| 35 |  | ffvelcdm | ⊢ ( ( 𝐴 : ( 0 [,] 1 ) ⟶ ∪  𝑅  ∧  0  ∈  ( 0 [,] 1 ) )  →  ( 𝐴 ‘ 0 )  ∈  ∪  𝑅 ) | 
						
							| 36 | 34 21 35 | sylancl | ⊢ ( 𝜑  →  ( 𝐴 ‘ 0 )  ∈  ∪  𝑅 ) | 
						
							| 37 | 10 13 36 | cnmptc | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 0 [,] 1 )  ↦  ( 𝐴 ‘ 0 ) )  ∈  ( II  Cn  𝑅 ) ) | 
						
							| 38 | 31 37 | eqeltrid | ⊢ ( 𝜑  →  ( ( 0 [,] 1 )  ×  { ( 𝐴 ‘ 0 ) } )  ∈  ( II  Cn  𝑅 ) ) | 
						
							| 39 | 30 38 | phtpycn | ⊢ ( 𝜑  →  ( 𝐴 ( PHtpy ‘ 𝑅 ) ( ( 0 [,] 1 )  ×  { ( 𝐴 ‘ 0 ) } ) )  ⊆  ( ( II  ×t  II )  Cn  𝑅 ) ) | 
						
							| 40 | 39 6 | sseldd | ⊢ ( 𝜑  →  𝐺  ∈  ( ( II  ×t  II )  Cn  𝑅 ) ) | 
						
							| 41 |  | iitop | ⊢ II  ∈  Top | 
						
							| 42 | 41 41 32 32 | txunii | ⊢ ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) )  =  ∪  ( II  ×t  II ) | 
						
							| 43 | 42 11 | cnf | ⊢ ( 𝐺  ∈  ( ( II  ×t  II )  Cn  𝑅 )  →  𝐺 : ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ⟶ ∪  𝑅 ) | 
						
							| 44 |  | ffn | ⊢ ( 𝐺 : ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ⟶ ∪  𝑅  →  𝐺  Fn  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ) | 
						
							| 45 | 40 43 44 | 3syl | ⊢ ( 𝜑  →  𝐺  Fn  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ) | 
						
							| 46 |  | fnov | ⊢ ( 𝐺  Fn  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) )  ↔  𝐺  =  ( 𝑥  ∈  ( 0 [,] 1 ) ,  𝑦  ∈  ( 0 [,] 1 )  ↦  ( 𝑥 𝐺 𝑦 ) ) ) | 
						
							| 47 | 45 46 | sylib | ⊢ ( 𝜑  →  𝐺  =  ( 𝑥  ∈  ( 0 [,] 1 ) ,  𝑦  ∈  ( 0 [,] 1 )  ↦  ( 𝑥 𝐺 𝑦 ) ) ) | 
						
							| 48 | 47 40 | eqeltrrd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 0 [,] 1 ) ,  𝑦  ∈  ( 0 [,] 1 )  ↦  ( 𝑥 𝐺 𝑦 ) )  ∈  ( ( II  ×t  II )  Cn  𝑅 ) ) | 
						
							| 49 |  | tx2cn | ⊢ ( ( 𝑅  ∈  ( TopOn ‘ ∪  𝑅 )  ∧  𝑆  ∈  ( TopOn ‘ ∪  𝑆 ) )  →  ( 2nd   ↾  ( ∪  𝑅  ×  ∪  𝑆 ) )  ∈  ( ( 𝑅  ×t  𝑆 )  Cn  𝑆 ) ) | 
						
							| 50 | 13 16 49 | syl2anc | ⊢ ( 𝜑  →  ( 2nd   ↾  ( ∪  𝑅  ×  ∪  𝑆 ) )  ∈  ( ( 𝑅  ×t  𝑆 )  Cn  𝑆 ) ) | 
						
							| 51 |  | cnco | ⊢ ( ( 𝐹  ∈  ( II  Cn  ( 𝑅  ×t  𝑆 ) )  ∧  ( 2nd   ↾  ( ∪  𝑅  ×  ∪  𝑆 ) )  ∈  ( ( 𝑅  ×t  𝑆 )  Cn  𝑆 ) )  →  ( ( 2nd   ↾  ( ∪  𝑅  ×  ∪  𝑆 ) )  ∘  𝐹 )  ∈  ( II  Cn  𝑆 ) ) | 
						
							| 52 | 3 50 51 | syl2anc | ⊢ ( 𝜑  →  ( ( 2nd   ↾  ( ∪  𝑅  ×  ∪  𝑆 ) )  ∘  𝐹 )  ∈  ( II  Cn  𝑆 ) ) | 
						
							| 53 | 5 52 | eqeltrid | ⊢ ( 𝜑  →  𝐵  ∈  ( II  Cn  𝑆 ) ) | 
						
							| 54 |  | fconstmpt | ⊢ ( ( 0 [,] 1 )  ×  { ( 𝐵 ‘ 0 ) } )  =  ( 𝑥  ∈  ( 0 [,] 1 )  ↦  ( 𝐵 ‘ 0 ) ) | 
						
							| 55 | 32 14 | cnf | ⊢ ( 𝐵  ∈  ( II  Cn  𝑆 )  →  𝐵 : ( 0 [,] 1 ) ⟶ ∪  𝑆 ) | 
						
							| 56 | 53 55 | syl | ⊢ ( 𝜑  →  𝐵 : ( 0 [,] 1 ) ⟶ ∪  𝑆 ) | 
						
							| 57 |  | ffvelcdm | ⊢ ( ( 𝐵 : ( 0 [,] 1 ) ⟶ ∪  𝑆  ∧  0  ∈  ( 0 [,] 1 ) )  →  ( 𝐵 ‘ 0 )  ∈  ∪  𝑆 ) | 
						
							| 58 | 56 21 57 | sylancl | ⊢ ( 𝜑  →  ( 𝐵 ‘ 0 )  ∈  ∪  𝑆 ) | 
						
							| 59 | 10 16 58 | cnmptc | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 0 [,] 1 )  ↦  ( 𝐵 ‘ 0 ) )  ∈  ( II  Cn  𝑆 ) ) | 
						
							| 60 | 54 59 | eqeltrid | ⊢ ( 𝜑  →  ( ( 0 [,] 1 )  ×  { ( 𝐵 ‘ 0 ) } )  ∈  ( II  Cn  𝑆 ) ) | 
						
							| 61 | 53 60 | phtpycn | ⊢ ( 𝜑  →  ( 𝐵 ( PHtpy ‘ 𝑆 ) ( ( 0 [,] 1 )  ×  { ( 𝐵 ‘ 0 ) } ) )  ⊆  ( ( II  ×t  II )  Cn  𝑆 ) ) | 
						
							| 62 | 61 7 | sseldd | ⊢ ( 𝜑  →  𝐻  ∈  ( ( II  ×t  II )  Cn  𝑆 ) ) | 
						
							| 63 | 42 14 | cnf | ⊢ ( 𝐻  ∈  ( ( II  ×t  II )  Cn  𝑆 )  →  𝐻 : ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ⟶ ∪  𝑆 ) | 
						
							| 64 |  | ffn | ⊢ ( 𝐻 : ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ⟶ ∪  𝑆  →  𝐻  Fn  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ) | 
						
							| 65 | 62 63 64 | 3syl | ⊢ ( 𝜑  →  𝐻  Fn  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ) | 
						
							| 66 |  | fnov | ⊢ ( 𝐻  Fn  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) )  ↔  𝐻  =  ( 𝑥  ∈  ( 0 [,] 1 ) ,  𝑦  ∈  ( 0 [,] 1 )  ↦  ( 𝑥 𝐻 𝑦 ) ) ) | 
						
							| 67 | 65 66 | sylib | ⊢ ( 𝜑  →  𝐻  =  ( 𝑥  ∈  ( 0 [,] 1 ) ,  𝑦  ∈  ( 0 [,] 1 )  ↦  ( 𝑥 𝐻 𝑦 ) ) ) | 
						
							| 68 | 67 62 | eqeltrrd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 0 [,] 1 ) ,  𝑦  ∈  ( 0 [,] 1 )  ↦  ( 𝑥 𝐻 𝑦 ) )  ∈  ( ( II  ×t  II )  Cn  𝑆 ) ) | 
						
							| 69 | 10 10 48 68 | cnmpt2t | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 0 [,] 1 ) ,  𝑦  ∈  ( 0 [,] 1 )  ↦  〈 ( 𝑥 𝐺 𝑦 ) ,  ( 𝑥 𝐻 𝑦 ) 〉 )  ∈  ( ( II  ×t  II )  Cn  ( 𝑅  ×t  𝑆 ) ) ) | 
						
							| 70 | 30 38 | phtpyhtpy | ⊢ ( 𝜑  →  ( 𝐴 ( PHtpy ‘ 𝑅 ) ( ( 0 [,] 1 )  ×  { ( 𝐴 ‘ 0 ) } ) )  ⊆  ( 𝐴 ( II  Htpy  𝑅 ) ( ( 0 [,] 1 )  ×  { ( 𝐴 ‘ 0 ) } ) ) ) | 
						
							| 71 | 70 6 | sseldd | ⊢ ( 𝜑  →  𝐺  ∈  ( 𝐴 ( II  Htpy  𝑅 ) ( ( 0 [,] 1 )  ×  { ( 𝐴 ‘ 0 ) } ) ) ) | 
						
							| 72 | 10 30 38 71 | htpyi | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  ( ( 𝑠 𝐺 0 )  =  ( 𝐴 ‘ 𝑠 )  ∧  ( 𝑠 𝐺 1 )  =  ( ( ( 0 [,] 1 )  ×  { ( 𝐴 ‘ 0 ) } ) ‘ 𝑠 ) ) ) | 
						
							| 73 | 72 | simpld | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  ( 𝑠 𝐺 0 )  =  ( 𝐴 ‘ 𝑠 ) ) | 
						
							| 74 | 4 | fveq1i | ⊢ ( 𝐴 ‘ 𝑠 )  =  ( ( ( 1st   ↾  ( ∪  𝑅  ×  ∪  𝑆 ) )  ∘  𝐹 ) ‘ 𝑠 ) | 
						
							| 75 |  | fvco3 | ⊢ ( ( 𝐹 : ( 0 [,] 1 ) ⟶ ( ∪  𝑅  ×  ∪  𝑆 )  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  ( ( ( 1st   ↾  ( ∪  𝑅  ×  ∪  𝑆 ) )  ∘  𝐹 ) ‘ 𝑠 )  =  ( ( 1st   ↾  ( ∪  𝑅  ×  ∪  𝑆 ) ) ‘ ( 𝐹 ‘ 𝑠 ) ) ) | 
						
							| 76 | 20 75 | sylan | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  ( ( ( 1st   ↾  ( ∪  𝑅  ×  ∪  𝑆 ) )  ∘  𝐹 ) ‘ 𝑠 )  =  ( ( 1st   ↾  ( ∪  𝑅  ×  ∪  𝑆 ) ) ‘ ( 𝐹 ‘ 𝑠 ) ) ) | 
						
							| 77 | 74 76 | eqtrid | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  ( 𝐴 ‘ 𝑠 )  =  ( ( 1st   ↾  ( ∪  𝑅  ×  ∪  𝑆 ) ) ‘ ( 𝐹 ‘ 𝑠 ) ) ) | 
						
							| 78 |  | ffvelcdm | ⊢ ( ( 𝐹 : ( 0 [,] 1 ) ⟶ ( ∪  𝑅  ×  ∪  𝑆 )  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  ( 𝐹 ‘ 𝑠 )  ∈  ( ∪  𝑅  ×  ∪  𝑆 ) ) | 
						
							| 79 | 20 78 | sylan | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  ( 𝐹 ‘ 𝑠 )  ∈  ( ∪  𝑅  ×  ∪  𝑆 ) ) | 
						
							| 80 |  | fvres | ⊢ ( ( 𝐹 ‘ 𝑠 )  ∈  ( ∪  𝑅  ×  ∪  𝑆 )  →  ( ( 1st   ↾  ( ∪  𝑅  ×  ∪  𝑆 ) ) ‘ ( 𝐹 ‘ 𝑠 ) )  =  ( 1st  ‘ ( 𝐹 ‘ 𝑠 ) ) ) | 
						
							| 81 | 79 80 | syl | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  ( ( 1st   ↾  ( ∪  𝑅  ×  ∪  𝑆 ) ) ‘ ( 𝐹 ‘ 𝑠 ) )  =  ( 1st  ‘ ( 𝐹 ‘ 𝑠 ) ) ) | 
						
							| 82 | 73 77 81 | 3eqtrd | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  ( 𝑠 𝐺 0 )  =  ( 1st  ‘ ( 𝐹 ‘ 𝑠 ) ) ) | 
						
							| 83 | 53 60 | phtpyhtpy | ⊢ ( 𝜑  →  ( 𝐵 ( PHtpy ‘ 𝑆 ) ( ( 0 [,] 1 )  ×  { ( 𝐵 ‘ 0 ) } ) )  ⊆  ( 𝐵 ( II  Htpy  𝑆 ) ( ( 0 [,] 1 )  ×  { ( 𝐵 ‘ 0 ) } ) ) ) | 
						
							| 84 | 83 7 | sseldd | ⊢ ( 𝜑  →  𝐻  ∈  ( 𝐵 ( II  Htpy  𝑆 ) ( ( 0 [,] 1 )  ×  { ( 𝐵 ‘ 0 ) } ) ) ) | 
						
							| 85 | 10 53 60 84 | htpyi | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  ( ( 𝑠 𝐻 0 )  =  ( 𝐵 ‘ 𝑠 )  ∧  ( 𝑠 𝐻 1 )  =  ( ( ( 0 [,] 1 )  ×  { ( 𝐵 ‘ 0 ) } ) ‘ 𝑠 ) ) ) | 
						
							| 86 | 85 | simpld | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  ( 𝑠 𝐻 0 )  =  ( 𝐵 ‘ 𝑠 ) ) | 
						
							| 87 | 5 | fveq1i | ⊢ ( 𝐵 ‘ 𝑠 )  =  ( ( ( 2nd   ↾  ( ∪  𝑅  ×  ∪  𝑆 ) )  ∘  𝐹 ) ‘ 𝑠 ) | 
						
							| 88 |  | fvco3 | ⊢ ( ( 𝐹 : ( 0 [,] 1 ) ⟶ ( ∪  𝑅  ×  ∪  𝑆 )  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  ( ( ( 2nd   ↾  ( ∪  𝑅  ×  ∪  𝑆 ) )  ∘  𝐹 ) ‘ 𝑠 )  =  ( ( 2nd   ↾  ( ∪  𝑅  ×  ∪  𝑆 ) ) ‘ ( 𝐹 ‘ 𝑠 ) ) ) | 
						
							| 89 | 20 88 | sylan | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  ( ( ( 2nd   ↾  ( ∪  𝑅  ×  ∪  𝑆 ) )  ∘  𝐹 ) ‘ 𝑠 )  =  ( ( 2nd   ↾  ( ∪  𝑅  ×  ∪  𝑆 ) ) ‘ ( 𝐹 ‘ 𝑠 ) ) ) | 
						
							| 90 | 87 89 | eqtrid | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  ( 𝐵 ‘ 𝑠 )  =  ( ( 2nd   ↾  ( ∪  𝑅  ×  ∪  𝑆 ) ) ‘ ( 𝐹 ‘ 𝑠 ) ) ) | 
						
							| 91 |  | fvres | ⊢ ( ( 𝐹 ‘ 𝑠 )  ∈  ( ∪  𝑅  ×  ∪  𝑆 )  →  ( ( 2nd   ↾  ( ∪  𝑅  ×  ∪  𝑆 ) ) ‘ ( 𝐹 ‘ 𝑠 ) )  =  ( 2nd  ‘ ( 𝐹 ‘ 𝑠 ) ) ) | 
						
							| 92 | 79 91 | syl | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  ( ( 2nd   ↾  ( ∪  𝑅  ×  ∪  𝑆 ) ) ‘ ( 𝐹 ‘ 𝑠 ) )  =  ( 2nd  ‘ ( 𝐹 ‘ 𝑠 ) ) ) | 
						
							| 93 | 86 90 92 | 3eqtrd | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  ( 𝑠 𝐻 0 )  =  ( 2nd  ‘ ( 𝐹 ‘ 𝑠 ) ) ) | 
						
							| 94 | 82 93 | opeq12d | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  〈 ( 𝑠 𝐺 0 ) ,  ( 𝑠 𝐻 0 ) 〉  =  〈 ( 1st  ‘ ( 𝐹 ‘ 𝑠 ) ) ,  ( 2nd  ‘ ( 𝐹 ‘ 𝑠 ) ) 〉 ) | 
						
							| 95 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  𝑠  ∈  ( 0 [,] 1 ) ) | 
						
							| 96 |  | oveq12 | ⊢ ( ( 𝑥  =  𝑠  ∧  𝑦  =  0 )  →  ( 𝑥 𝐺 𝑦 )  =  ( 𝑠 𝐺 0 ) ) | 
						
							| 97 |  | oveq12 | ⊢ ( ( 𝑥  =  𝑠  ∧  𝑦  =  0 )  →  ( 𝑥 𝐻 𝑦 )  =  ( 𝑠 𝐻 0 ) ) | 
						
							| 98 | 96 97 | opeq12d | ⊢ ( ( 𝑥  =  𝑠  ∧  𝑦  =  0 )  →  〈 ( 𝑥 𝐺 𝑦 ) ,  ( 𝑥 𝐻 𝑦 ) 〉  =  〈 ( 𝑠 𝐺 0 ) ,  ( 𝑠 𝐻 0 ) 〉 ) | 
						
							| 99 |  | eqid | ⊢ ( 𝑥  ∈  ( 0 [,] 1 ) ,  𝑦  ∈  ( 0 [,] 1 )  ↦  〈 ( 𝑥 𝐺 𝑦 ) ,  ( 𝑥 𝐻 𝑦 ) 〉 )  =  ( 𝑥  ∈  ( 0 [,] 1 ) ,  𝑦  ∈  ( 0 [,] 1 )  ↦  〈 ( 𝑥 𝐺 𝑦 ) ,  ( 𝑥 𝐻 𝑦 ) 〉 ) | 
						
							| 100 |  | opex | ⊢ 〈 ( 𝑠 𝐺 0 ) ,  ( 𝑠 𝐻 0 ) 〉  ∈  V | 
						
							| 101 | 98 99 100 | ovmpoa | ⊢ ( ( 𝑠  ∈  ( 0 [,] 1 )  ∧  0  ∈  ( 0 [,] 1 ) )  →  ( 𝑠 ( 𝑥  ∈  ( 0 [,] 1 ) ,  𝑦  ∈  ( 0 [,] 1 )  ↦  〈 ( 𝑥 𝐺 𝑦 ) ,  ( 𝑥 𝐻 𝑦 ) 〉 ) 0 )  =  〈 ( 𝑠 𝐺 0 ) ,  ( 𝑠 𝐻 0 ) 〉 ) | 
						
							| 102 | 95 21 101 | sylancl | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  ( 𝑠 ( 𝑥  ∈  ( 0 [,] 1 ) ,  𝑦  ∈  ( 0 [,] 1 )  ↦  〈 ( 𝑥 𝐺 𝑦 ) ,  ( 𝑥 𝐻 𝑦 ) 〉 ) 0 )  =  〈 ( 𝑠 𝐺 0 ) ,  ( 𝑠 𝐻 0 ) 〉 ) | 
						
							| 103 |  | 1st2nd2 | ⊢ ( ( 𝐹 ‘ 𝑠 )  ∈  ( ∪  𝑅  ×  ∪  𝑆 )  →  ( 𝐹 ‘ 𝑠 )  =  〈 ( 1st  ‘ ( 𝐹 ‘ 𝑠 ) ) ,  ( 2nd  ‘ ( 𝐹 ‘ 𝑠 ) ) 〉 ) | 
						
							| 104 | 79 103 | syl | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  ( 𝐹 ‘ 𝑠 )  =  〈 ( 1st  ‘ ( 𝐹 ‘ 𝑠 ) ) ,  ( 2nd  ‘ ( 𝐹 ‘ 𝑠 ) ) 〉 ) | 
						
							| 105 | 94 102 104 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  ( 𝑠 ( 𝑥  ∈  ( 0 [,] 1 ) ,  𝑦  ∈  ( 0 [,] 1 )  ↦  〈 ( 𝑥 𝐺 𝑦 ) ,  ( 𝑥 𝐻 𝑦 ) 〉 ) 0 )  =  ( 𝐹 ‘ 𝑠 ) ) | 
						
							| 106 | 72 | simprd | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  ( 𝑠 𝐺 1 )  =  ( ( ( 0 [,] 1 )  ×  { ( 𝐴 ‘ 0 ) } ) ‘ 𝑠 ) ) | 
						
							| 107 |  | fvex | ⊢ ( 𝐴 ‘ 0 )  ∈  V | 
						
							| 108 | 107 | fvconst2 | ⊢ ( 𝑠  ∈  ( 0 [,] 1 )  →  ( ( ( 0 [,] 1 )  ×  { ( 𝐴 ‘ 0 ) } ) ‘ 𝑠 )  =  ( 𝐴 ‘ 0 ) ) | 
						
							| 109 | 108 | adantl | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  ( ( ( 0 [,] 1 )  ×  { ( 𝐴 ‘ 0 ) } ) ‘ 𝑠 )  =  ( 𝐴 ‘ 0 ) ) | 
						
							| 110 | 4 | fveq1i | ⊢ ( 𝐴 ‘ 0 )  =  ( ( ( 1st   ↾  ( ∪  𝑅  ×  ∪  𝑆 ) )  ∘  𝐹 ) ‘ 0 ) | 
						
							| 111 |  | fvco3 | ⊢ ( ( 𝐹 : ( 0 [,] 1 ) ⟶ ( ∪  𝑅  ×  ∪  𝑆 )  ∧  0  ∈  ( 0 [,] 1 ) )  →  ( ( ( 1st   ↾  ( ∪  𝑅  ×  ∪  𝑆 ) )  ∘  𝐹 ) ‘ 0 )  =  ( ( 1st   ↾  ( ∪  𝑅  ×  ∪  𝑆 ) ) ‘ ( 𝐹 ‘ 0 ) ) ) | 
						
							| 112 | 20 21 111 | sylancl | ⊢ ( 𝜑  →  ( ( ( 1st   ↾  ( ∪  𝑅  ×  ∪  𝑆 ) )  ∘  𝐹 ) ‘ 0 )  =  ( ( 1st   ↾  ( ∪  𝑅  ×  ∪  𝑆 ) ) ‘ ( 𝐹 ‘ 0 ) ) ) | 
						
							| 113 |  | fvres | ⊢ ( ( 𝐹 ‘ 0 )  ∈  ( ∪  𝑅  ×  ∪  𝑆 )  →  ( ( 1st   ↾  ( ∪  𝑅  ×  ∪  𝑆 ) ) ‘ ( 𝐹 ‘ 0 ) )  =  ( 1st  ‘ ( 𝐹 ‘ 0 ) ) ) | 
						
							| 114 | 23 113 | syl | ⊢ ( 𝜑  →  ( ( 1st   ↾  ( ∪  𝑅  ×  ∪  𝑆 ) ) ‘ ( 𝐹 ‘ 0 ) )  =  ( 1st  ‘ ( 𝐹 ‘ 0 ) ) ) | 
						
							| 115 | 112 114 | eqtrd | ⊢ ( 𝜑  →  ( ( ( 1st   ↾  ( ∪  𝑅  ×  ∪  𝑆 ) )  ∘  𝐹 ) ‘ 0 )  =  ( 1st  ‘ ( 𝐹 ‘ 0 ) ) ) | 
						
							| 116 | 110 115 | eqtrid | ⊢ ( 𝜑  →  ( 𝐴 ‘ 0 )  =  ( 1st  ‘ ( 𝐹 ‘ 0 ) ) ) | 
						
							| 117 | 116 | adantr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  ( 𝐴 ‘ 0 )  =  ( 1st  ‘ ( 𝐹 ‘ 0 ) ) ) | 
						
							| 118 | 106 109 117 | 3eqtrd | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  ( 𝑠 𝐺 1 )  =  ( 1st  ‘ ( 𝐹 ‘ 0 ) ) ) | 
						
							| 119 | 85 | simprd | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  ( 𝑠 𝐻 1 )  =  ( ( ( 0 [,] 1 )  ×  { ( 𝐵 ‘ 0 ) } ) ‘ 𝑠 ) ) | 
						
							| 120 |  | fvex | ⊢ ( 𝐵 ‘ 0 )  ∈  V | 
						
							| 121 | 120 | fvconst2 | ⊢ ( 𝑠  ∈  ( 0 [,] 1 )  →  ( ( ( 0 [,] 1 )  ×  { ( 𝐵 ‘ 0 ) } ) ‘ 𝑠 )  =  ( 𝐵 ‘ 0 ) ) | 
						
							| 122 | 121 | adantl | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  ( ( ( 0 [,] 1 )  ×  { ( 𝐵 ‘ 0 ) } ) ‘ 𝑠 )  =  ( 𝐵 ‘ 0 ) ) | 
						
							| 123 | 5 | fveq1i | ⊢ ( 𝐵 ‘ 0 )  =  ( ( ( 2nd   ↾  ( ∪  𝑅  ×  ∪  𝑆 ) )  ∘  𝐹 ) ‘ 0 ) | 
						
							| 124 |  | fvco3 | ⊢ ( ( 𝐹 : ( 0 [,] 1 ) ⟶ ( ∪  𝑅  ×  ∪  𝑆 )  ∧  0  ∈  ( 0 [,] 1 ) )  →  ( ( ( 2nd   ↾  ( ∪  𝑅  ×  ∪  𝑆 ) )  ∘  𝐹 ) ‘ 0 )  =  ( ( 2nd   ↾  ( ∪  𝑅  ×  ∪  𝑆 ) ) ‘ ( 𝐹 ‘ 0 ) ) ) | 
						
							| 125 | 20 21 124 | sylancl | ⊢ ( 𝜑  →  ( ( ( 2nd   ↾  ( ∪  𝑅  ×  ∪  𝑆 ) )  ∘  𝐹 ) ‘ 0 )  =  ( ( 2nd   ↾  ( ∪  𝑅  ×  ∪  𝑆 ) ) ‘ ( 𝐹 ‘ 0 ) ) ) | 
						
							| 126 |  | fvres | ⊢ ( ( 𝐹 ‘ 0 )  ∈  ( ∪  𝑅  ×  ∪  𝑆 )  →  ( ( 2nd   ↾  ( ∪  𝑅  ×  ∪  𝑆 ) ) ‘ ( 𝐹 ‘ 0 ) )  =  ( 2nd  ‘ ( 𝐹 ‘ 0 ) ) ) | 
						
							| 127 | 23 126 | syl | ⊢ ( 𝜑  →  ( ( 2nd   ↾  ( ∪  𝑅  ×  ∪  𝑆 ) ) ‘ ( 𝐹 ‘ 0 ) )  =  ( 2nd  ‘ ( 𝐹 ‘ 0 ) ) ) | 
						
							| 128 | 125 127 | eqtrd | ⊢ ( 𝜑  →  ( ( ( 2nd   ↾  ( ∪  𝑅  ×  ∪  𝑆 ) )  ∘  𝐹 ) ‘ 0 )  =  ( 2nd  ‘ ( 𝐹 ‘ 0 ) ) ) | 
						
							| 129 | 123 128 | eqtrid | ⊢ ( 𝜑  →  ( 𝐵 ‘ 0 )  =  ( 2nd  ‘ ( 𝐹 ‘ 0 ) ) ) | 
						
							| 130 | 129 | adantr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  ( 𝐵 ‘ 0 )  =  ( 2nd  ‘ ( 𝐹 ‘ 0 ) ) ) | 
						
							| 131 | 119 122 130 | 3eqtrd | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  ( 𝑠 𝐻 1 )  =  ( 2nd  ‘ ( 𝐹 ‘ 0 ) ) ) | 
						
							| 132 | 118 131 | opeq12d | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  〈 ( 𝑠 𝐺 1 ) ,  ( 𝑠 𝐻 1 ) 〉  =  〈 ( 1st  ‘ ( 𝐹 ‘ 0 ) ) ,  ( 2nd  ‘ ( 𝐹 ‘ 0 ) ) 〉 ) | 
						
							| 133 |  | 1elunit | ⊢ 1  ∈  ( 0 [,] 1 ) | 
						
							| 134 |  | oveq12 | ⊢ ( ( 𝑥  =  𝑠  ∧  𝑦  =  1 )  →  ( 𝑥 𝐺 𝑦 )  =  ( 𝑠 𝐺 1 ) ) | 
						
							| 135 |  | oveq12 | ⊢ ( ( 𝑥  =  𝑠  ∧  𝑦  =  1 )  →  ( 𝑥 𝐻 𝑦 )  =  ( 𝑠 𝐻 1 ) ) | 
						
							| 136 | 134 135 | opeq12d | ⊢ ( ( 𝑥  =  𝑠  ∧  𝑦  =  1 )  →  〈 ( 𝑥 𝐺 𝑦 ) ,  ( 𝑥 𝐻 𝑦 ) 〉  =  〈 ( 𝑠 𝐺 1 ) ,  ( 𝑠 𝐻 1 ) 〉 ) | 
						
							| 137 |  | opex | ⊢ 〈 ( 𝑠 𝐺 1 ) ,  ( 𝑠 𝐻 1 ) 〉  ∈  V | 
						
							| 138 | 136 99 137 | ovmpoa | ⊢ ( ( 𝑠  ∈  ( 0 [,] 1 )  ∧  1  ∈  ( 0 [,] 1 ) )  →  ( 𝑠 ( 𝑥  ∈  ( 0 [,] 1 ) ,  𝑦  ∈  ( 0 [,] 1 )  ↦  〈 ( 𝑥 𝐺 𝑦 ) ,  ( 𝑥 𝐻 𝑦 ) 〉 ) 1 )  =  〈 ( 𝑠 𝐺 1 ) ,  ( 𝑠 𝐻 1 ) 〉 ) | 
						
							| 139 | 95 133 138 | sylancl | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  ( 𝑠 ( 𝑥  ∈  ( 0 [,] 1 ) ,  𝑦  ∈  ( 0 [,] 1 )  ↦  〈 ( 𝑥 𝐺 𝑦 ) ,  ( 𝑥 𝐻 𝑦 ) 〉 ) 1 )  =  〈 ( 𝑠 𝐺 1 ) ,  ( 𝑠 𝐻 1 ) 〉 ) | 
						
							| 140 |  | fvex | ⊢ ( 𝐹 ‘ 0 )  ∈  V | 
						
							| 141 | 140 | fvconst2 | ⊢ ( 𝑠  ∈  ( 0 [,] 1 )  →  ( ( ( 0 [,] 1 )  ×  { ( 𝐹 ‘ 0 ) } ) ‘ 𝑠 )  =  ( 𝐹 ‘ 0 ) ) | 
						
							| 142 | 141 | adantl | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  ( ( ( 0 [,] 1 )  ×  { ( 𝐹 ‘ 0 ) } ) ‘ 𝑠 )  =  ( 𝐹 ‘ 0 ) ) | 
						
							| 143 | 23 | adantr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  ( 𝐹 ‘ 0 )  ∈  ( ∪  𝑅  ×  ∪  𝑆 ) ) | 
						
							| 144 |  | 1st2nd2 | ⊢ ( ( 𝐹 ‘ 0 )  ∈  ( ∪  𝑅  ×  ∪  𝑆 )  →  ( 𝐹 ‘ 0 )  =  〈 ( 1st  ‘ ( 𝐹 ‘ 0 ) ) ,  ( 2nd  ‘ ( 𝐹 ‘ 0 ) ) 〉 ) | 
						
							| 145 | 143 144 | syl | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  ( 𝐹 ‘ 0 )  =  〈 ( 1st  ‘ ( 𝐹 ‘ 0 ) ) ,  ( 2nd  ‘ ( 𝐹 ‘ 0 ) ) 〉 ) | 
						
							| 146 | 142 145 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  ( ( ( 0 [,] 1 )  ×  { ( 𝐹 ‘ 0 ) } ) ‘ 𝑠 )  =  〈 ( 1st  ‘ ( 𝐹 ‘ 0 ) ) ,  ( 2nd  ‘ ( 𝐹 ‘ 0 ) ) 〉 ) | 
						
							| 147 | 132 139 146 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  ( 𝑠 ( 𝑥  ∈  ( 0 [,] 1 ) ,  𝑦  ∈  ( 0 [,] 1 )  ↦  〈 ( 𝑥 𝐺 𝑦 ) ,  ( 𝑥 𝐻 𝑦 ) 〉 ) 1 )  =  ( ( ( 0 [,] 1 )  ×  { ( 𝐹 ‘ 0 ) } ) ‘ 𝑠 ) ) | 
						
							| 148 | 30 38 6 | phtpyi | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  ( ( 0 𝐺 𝑠 )  =  ( 𝐴 ‘ 0 )  ∧  ( 1 𝐺 𝑠 )  =  ( 𝐴 ‘ 1 ) ) ) | 
						
							| 149 | 148 | simpld | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  ( 0 𝐺 𝑠 )  =  ( 𝐴 ‘ 0 ) ) | 
						
							| 150 | 149 117 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  ( 0 𝐺 𝑠 )  =  ( 1st  ‘ ( 𝐹 ‘ 0 ) ) ) | 
						
							| 151 | 53 60 7 | phtpyi | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  ( ( 0 𝐻 𝑠 )  =  ( 𝐵 ‘ 0 )  ∧  ( 1 𝐻 𝑠 )  =  ( 𝐵 ‘ 1 ) ) ) | 
						
							| 152 | 151 | simpld | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  ( 0 𝐻 𝑠 )  =  ( 𝐵 ‘ 0 ) ) | 
						
							| 153 | 152 130 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  ( 0 𝐻 𝑠 )  =  ( 2nd  ‘ ( 𝐹 ‘ 0 ) ) ) | 
						
							| 154 | 150 153 | opeq12d | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  〈 ( 0 𝐺 𝑠 ) ,  ( 0 𝐻 𝑠 ) 〉  =  〈 ( 1st  ‘ ( 𝐹 ‘ 0 ) ) ,  ( 2nd  ‘ ( 𝐹 ‘ 0 ) ) 〉 ) | 
						
							| 155 |  | oveq12 | ⊢ ( ( 𝑥  =  0  ∧  𝑦  =  𝑠 )  →  ( 𝑥 𝐺 𝑦 )  =  ( 0 𝐺 𝑠 ) ) | 
						
							| 156 |  | oveq12 | ⊢ ( ( 𝑥  =  0  ∧  𝑦  =  𝑠 )  →  ( 𝑥 𝐻 𝑦 )  =  ( 0 𝐻 𝑠 ) ) | 
						
							| 157 | 155 156 | opeq12d | ⊢ ( ( 𝑥  =  0  ∧  𝑦  =  𝑠 )  →  〈 ( 𝑥 𝐺 𝑦 ) ,  ( 𝑥 𝐻 𝑦 ) 〉  =  〈 ( 0 𝐺 𝑠 ) ,  ( 0 𝐻 𝑠 ) 〉 ) | 
						
							| 158 |  | opex | ⊢ 〈 ( 0 𝐺 𝑠 ) ,  ( 0 𝐻 𝑠 ) 〉  ∈  V | 
						
							| 159 | 157 99 158 | ovmpoa | ⊢ ( ( 0  ∈  ( 0 [,] 1 )  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  ( 0 ( 𝑥  ∈  ( 0 [,] 1 ) ,  𝑦  ∈  ( 0 [,] 1 )  ↦  〈 ( 𝑥 𝐺 𝑦 ) ,  ( 𝑥 𝐻 𝑦 ) 〉 ) 𝑠 )  =  〈 ( 0 𝐺 𝑠 ) ,  ( 0 𝐻 𝑠 ) 〉 ) | 
						
							| 160 | 21 95 159 | sylancr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  ( 0 ( 𝑥  ∈  ( 0 [,] 1 ) ,  𝑦  ∈  ( 0 [,] 1 )  ↦  〈 ( 𝑥 𝐺 𝑦 ) ,  ( 𝑥 𝐻 𝑦 ) 〉 ) 𝑠 )  =  〈 ( 0 𝐺 𝑠 ) ,  ( 0 𝐻 𝑠 ) 〉 ) | 
						
							| 161 | 154 160 145 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  ( 0 ( 𝑥  ∈  ( 0 [,] 1 ) ,  𝑦  ∈  ( 0 [,] 1 )  ↦  〈 ( 𝑥 𝐺 𝑦 ) ,  ( 𝑥 𝐻 𝑦 ) 〉 ) 𝑠 )  =  ( 𝐹 ‘ 0 ) ) | 
						
							| 162 | 148 | simprd | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  ( 1 𝐺 𝑠 )  =  ( 𝐴 ‘ 1 ) ) | 
						
							| 163 | 4 | fveq1i | ⊢ ( 𝐴 ‘ 1 )  =  ( ( ( 1st   ↾  ( ∪  𝑅  ×  ∪  𝑆 ) )  ∘  𝐹 ) ‘ 1 ) | 
						
							| 164 |  | fvco3 | ⊢ ( ( 𝐹 : ( 0 [,] 1 ) ⟶ ( ∪  𝑅  ×  ∪  𝑆 )  ∧  1  ∈  ( 0 [,] 1 ) )  →  ( ( ( 1st   ↾  ( ∪  𝑅  ×  ∪  𝑆 ) )  ∘  𝐹 ) ‘ 1 )  =  ( ( 1st   ↾  ( ∪  𝑅  ×  ∪  𝑆 ) ) ‘ ( 𝐹 ‘ 1 ) ) ) | 
						
							| 165 | 20 133 164 | sylancl | ⊢ ( 𝜑  →  ( ( ( 1st   ↾  ( ∪  𝑅  ×  ∪  𝑆 ) )  ∘  𝐹 ) ‘ 1 )  =  ( ( 1st   ↾  ( ∪  𝑅  ×  ∪  𝑆 ) ) ‘ ( 𝐹 ‘ 1 ) ) ) | 
						
							| 166 | 163 165 | eqtrid | ⊢ ( 𝜑  →  ( 𝐴 ‘ 1 )  =  ( ( 1st   ↾  ( ∪  𝑅  ×  ∪  𝑆 ) ) ‘ ( 𝐹 ‘ 1 ) ) ) | 
						
							| 167 |  | ffvelcdm | ⊢ ( ( 𝐹 : ( 0 [,] 1 ) ⟶ ( ∪  𝑅  ×  ∪  𝑆 )  ∧  1  ∈  ( 0 [,] 1 ) )  →  ( 𝐹 ‘ 1 )  ∈  ( ∪  𝑅  ×  ∪  𝑆 ) ) | 
						
							| 168 | 20 133 167 | sylancl | ⊢ ( 𝜑  →  ( 𝐹 ‘ 1 )  ∈  ( ∪  𝑅  ×  ∪  𝑆 ) ) | 
						
							| 169 |  | fvres | ⊢ ( ( 𝐹 ‘ 1 )  ∈  ( ∪  𝑅  ×  ∪  𝑆 )  →  ( ( 1st   ↾  ( ∪  𝑅  ×  ∪  𝑆 ) ) ‘ ( 𝐹 ‘ 1 ) )  =  ( 1st  ‘ ( 𝐹 ‘ 1 ) ) ) | 
						
							| 170 | 168 169 | syl | ⊢ ( 𝜑  →  ( ( 1st   ↾  ( ∪  𝑅  ×  ∪  𝑆 ) ) ‘ ( 𝐹 ‘ 1 ) )  =  ( 1st  ‘ ( 𝐹 ‘ 1 ) ) ) | 
						
							| 171 | 166 170 | eqtrd | ⊢ ( 𝜑  →  ( 𝐴 ‘ 1 )  =  ( 1st  ‘ ( 𝐹 ‘ 1 ) ) ) | 
						
							| 172 | 171 | adantr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  ( 𝐴 ‘ 1 )  =  ( 1st  ‘ ( 𝐹 ‘ 1 ) ) ) | 
						
							| 173 | 162 172 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  ( 1 𝐺 𝑠 )  =  ( 1st  ‘ ( 𝐹 ‘ 1 ) ) ) | 
						
							| 174 | 151 | simprd | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  ( 1 𝐻 𝑠 )  =  ( 𝐵 ‘ 1 ) ) | 
						
							| 175 | 5 | fveq1i | ⊢ ( 𝐵 ‘ 1 )  =  ( ( ( 2nd   ↾  ( ∪  𝑅  ×  ∪  𝑆 ) )  ∘  𝐹 ) ‘ 1 ) | 
						
							| 176 |  | fvco3 | ⊢ ( ( 𝐹 : ( 0 [,] 1 ) ⟶ ( ∪  𝑅  ×  ∪  𝑆 )  ∧  1  ∈  ( 0 [,] 1 ) )  →  ( ( ( 2nd   ↾  ( ∪  𝑅  ×  ∪  𝑆 ) )  ∘  𝐹 ) ‘ 1 )  =  ( ( 2nd   ↾  ( ∪  𝑅  ×  ∪  𝑆 ) ) ‘ ( 𝐹 ‘ 1 ) ) ) | 
						
							| 177 | 20 133 176 | sylancl | ⊢ ( 𝜑  →  ( ( ( 2nd   ↾  ( ∪  𝑅  ×  ∪  𝑆 ) )  ∘  𝐹 ) ‘ 1 )  =  ( ( 2nd   ↾  ( ∪  𝑅  ×  ∪  𝑆 ) ) ‘ ( 𝐹 ‘ 1 ) ) ) | 
						
							| 178 | 175 177 | eqtrid | ⊢ ( 𝜑  →  ( 𝐵 ‘ 1 )  =  ( ( 2nd   ↾  ( ∪  𝑅  ×  ∪  𝑆 ) ) ‘ ( 𝐹 ‘ 1 ) ) ) | 
						
							| 179 |  | fvres | ⊢ ( ( 𝐹 ‘ 1 )  ∈  ( ∪  𝑅  ×  ∪  𝑆 )  →  ( ( 2nd   ↾  ( ∪  𝑅  ×  ∪  𝑆 ) ) ‘ ( 𝐹 ‘ 1 ) )  =  ( 2nd  ‘ ( 𝐹 ‘ 1 ) ) ) | 
						
							| 180 | 168 179 | syl | ⊢ ( 𝜑  →  ( ( 2nd   ↾  ( ∪  𝑅  ×  ∪  𝑆 ) ) ‘ ( 𝐹 ‘ 1 ) )  =  ( 2nd  ‘ ( 𝐹 ‘ 1 ) ) ) | 
						
							| 181 | 178 180 | eqtrd | ⊢ ( 𝜑  →  ( 𝐵 ‘ 1 )  =  ( 2nd  ‘ ( 𝐹 ‘ 1 ) ) ) | 
						
							| 182 | 181 | adantr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  ( 𝐵 ‘ 1 )  =  ( 2nd  ‘ ( 𝐹 ‘ 1 ) ) ) | 
						
							| 183 | 174 182 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  ( 1 𝐻 𝑠 )  =  ( 2nd  ‘ ( 𝐹 ‘ 1 ) ) ) | 
						
							| 184 | 173 183 | opeq12d | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  〈 ( 1 𝐺 𝑠 ) ,  ( 1 𝐻 𝑠 ) 〉  =  〈 ( 1st  ‘ ( 𝐹 ‘ 1 ) ) ,  ( 2nd  ‘ ( 𝐹 ‘ 1 ) ) 〉 ) | 
						
							| 185 |  | oveq12 | ⊢ ( ( 𝑥  =  1  ∧  𝑦  =  𝑠 )  →  ( 𝑥 𝐺 𝑦 )  =  ( 1 𝐺 𝑠 ) ) | 
						
							| 186 |  | oveq12 | ⊢ ( ( 𝑥  =  1  ∧  𝑦  =  𝑠 )  →  ( 𝑥 𝐻 𝑦 )  =  ( 1 𝐻 𝑠 ) ) | 
						
							| 187 | 185 186 | opeq12d | ⊢ ( ( 𝑥  =  1  ∧  𝑦  =  𝑠 )  →  〈 ( 𝑥 𝐺 𝑦 ) ,  ( 𝑥 𝐻 𝑦 ) 〉  =  〈 ( 1 𝐺 𝑠 ) ,  ( 1 𝐻 𝑠 ) 〉 ) | 
						
							| 188 |  | opex | ⊢ 〈 ( 1 𝐺 𝑠 ) ,  ( 1 𝐻 𝑠 ) 〉  ∈  V | 
						
							| 189 | 187 99 188 | ovmpoa | ⊢ ( ( 1  ∈  ( 0 [,] 1 )  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  ( 1 ( 𝑥  ∈  ( 0 [,] 1 ) ,  𝑦  ∈  ( 0 [,] 1 )  ↦  〈 ( 𝑥 𝐺 𝑦 ) ,  ( 𝑥 𝐻 𝑦 ) 〉 ) 𝑠 )  =  〈 ( 1 𝐺 𝑠 ) ,  ( 1 𝐻 𝑠 ) 〉 ) | 
						
							| 190 | 133 95 189 | sylancr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  ( 1 ( 𝑥  ∈  ( 0 [,] 1 ) ,  𝑦  ∈  ( 0 [,] 1 )  ↦  〈 ( 𝑥 𝐺 𝑦 ) ,  ( 𝑥 𝐻 𝑦 ) 〉 ) 𝑠 )  =  〈 ( 1 𝐺 𝑠 ) ,  ( 1 𝐻 𝑠 ) 〉 ) | 
						
							| 191 | 168 | adantr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  ( 𝐹 ‘ 1 )  ∈  ( ∪  𝑅  ×  ∪  𝑆 ) ) | 
						
							| 192 |  | 1st2nd2 | ⊢ ( ( 𝐹 ‘ 1 )  ∈  ( ∪  𝑅  ×  ∪  𝑆 )  →  ( 𝐹 ‘ 1 )  =  〈 ( 1st  ‘ ( 𝐹 ‘ 1 ) ) ,  ( 2nd  ‘ ( 𝐹 ‘ 1 ) ) 〉 ) | 
						
							| 193 | 191 192 | syl | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  ( 𝐹 ‘ 1 )  =  〈 ( 1st  ‘ ( 𝐹 ‘ 1 ) ) ,  ( 2nd  ‘ ( 𝐹 ‘ 1 ) ) 〉 ) | 
						
							| 194 | 184 190 193 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  ( 1 ( 𝑥  ∈  ( 0 [,] 1 ) ,  𝑦  ∈  ( 0 [,] 1 )  ↦  〈 ( 𝑥 𝐺 𝑦 ) ,  ( 𝑥 𝐻 𝑦 ) 〉 ) 𝑠 )  =  ( 𝐹 ‘ 1 ) ) | 
						
							| 195 | 3 25 69 105 147 161 194 | isphtpy2d | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 0 [,] 1 ) ,  𝑦  ∈  ( 0 [,] 1 )  ↦  〈 ( 𝑥 𝐺 𝑦 ) ,  ( 𝑥 𝐻 𝑦 ) 〉 )  ∈  ( 𝐹 ( PHtpy ‘ ( 𝑅  ×t  𝑆 ) ) ( ( 0 [,] 1 )  ×  { ( 𝐹 ‘ 0 ) } ) ) ) | 
						
							| 196 | 195 | ne0d | ⊢ ( 𝜑  →  ( 𝐹 ( PHtpy ‘ ( 𝑅  ×t  𝑆 ) ) ( ( 0 [,] 1 )  ×  { ( 𝐹 ‘ 0 ) } ) )  ≠  ∅ ) | 
						
							| 197 |  | isphtpc | ⊢ ( 𝐹 (  ≃ph ‘ ( 𝑅  ×t  𝑆 ) ) ( ( 0 [,] 1 )  ×  { ( 𝐹 ‘ 0 ) } )  ↔  ( 𝐹  ∈  ( II  Cn  ( 𝑅  ×t  𝑆 ) )  ∧  ( ( 0 [,] 1 )  ×  { ( 𝐹 ‘ 0 ) } )  ∈  ( II  Cn  ( 𝑅  ×t  𝑆 ) )  ∧  ( 𝐹 ( PHtpy ‘ ( 𝑅  ×t  𝑆 ) ) ( ( 0 [,] 1 )  ×  { ( 𝐹 ‘ 0 ) } ) )  ≠  ∅ ) ) | 
						
							| 198 | 3 25 196 197 | syl3anbrc | ⊢ ( 𝜑  →  𝐹 (  ≃ph ‘ ( 𝑅  ×t  𝑆 ) ) ( ( 0 [,] 1 )  ×  { ( 𝐹 ‘ 0 ) } ) ) |