| Step | Hyp | Ref | Expression | 
						
							| 1 |  | txsconn.1 |  |-  ( ph -> R e. Top ) | 
						
							| 2 |  | txsconn.2 |  |-  ( ph -> S e. Top ) | 
						
							| 3 |  | txsconn.3 |  |-  ( ph -> F e. ( II Cn ( R tX S ) ) ) | 
						
							| 4 |  | txsconn.5 |  |-  A = ( ( 1st |` ( U. R X. U. S ) ) o. F ) | 
						
							| 5 |  | txsconn.6 |  |-  B = ( ( 2nd |` ( U. R X. U. S ) ) o. F ) | 
						
							| 6 |  | txsconn.7 |  |-  ( ph -> G e. ( A ( PHtpy ` R ) ( ( 0 [,] 1 ) X. { ( A ` 0 ) } ) ) ) | 
						
							| 7 |  | txsconn.8 |  |-  ( ph -> H e. ( B ( PHtpy ` S ) ( ( 0 [,] 1 ) X. { ( B ` 0 ) } ) ) ) | 
						
							| 8 |  | fconstmpt |  |-  ( ( 0 [,] 1 ) X. { ( F ` 0 ) } ) = ( x e. ( 0 [,] 1 ) |-> ( F ` 0 ) ) | 
						
							| 9 |  | iitopon |  |-  II e. ( TopOn ` ( 0 [,] 1 ) ) | 
						
							| 10 | 9 | a1i |  |-  ( ph -> II e. ( TopOn ` ( 0 [,] 1 ) ) ) | 
						
							| 11 |  | eqid |  |-  U. R = U. R | 
						
							| 12 | 11 | toptopon |  |-  ( R e. Top <-> R e. ( TopOn ` U. R ) ) | 
						
							| 13 | 1 12 | sylib |  |-  ( ph -> R e. ( TopOn ` U. R ) ) | 
						
							| 14 |  | eqid |  |-  U. S = U. S | 
						
							| 15 | 14 | toptopon |  |-  ( S e. Top <-> S e. ( TopOn ` U. S ) ) | 
						
							| 16 | 2 15 | sylib |  |-  ( ph -> S e. ( TopOn ` U. S ) ) | 
						
							| 17 |  | txtopon |  |-  ( ( R e. ( TopOn ` U. R ) /\ S e. ( TopOn ` U. S ) ) -> ( R tX S ) e. ( TopOn ` ( U. R X. U. S ) ) ) | 
						
							| 18 | 13 16 17 | syl2anc |  |-  ( ph -> ( R tX S ) e. ( TopOn ` ( U. R X. U. S ) ) ) | 
						
							| 19 |  | cnf2 |  |-  ( ( II e. ( TopOn ` ( 0 [,] 1 ) ) /\ ( R tX S ) e. ( TopOn ` ( U. R X. U. S ) ) /\ F e. ( II Cn ( R tX S ) ) ) -> F : ( 0 [,] 1 ) --> ( U. R X. U. S ) ) | 
						
							| 20 | 10 18 3 19 | syl3anc |  |-  ( ph -> F : ( 0 [,] 1 ) --> ( U. R X. U. S ) ) | 
						
							| 21 |  | 0elunit |  |-  0 e. ( 0 [,] 1 ) | 
						
							| 22 |  | ffvelcdm |  |-  ( ( F : ( 0 [,] 1 ) --> ( U. R X. U. S ) /\ 0 e. ( 0 [,] 1 ) ) -> ( F ` 0 ) e. ( U. R X. U. S ) ) | 
						
							| 23 | 20 21 22 | sylancl |  |-  ( ph -> ( F ` 0 ) e. ( U. R X. U. S ) ) | 
						
							| 24 | 10 18 23 | cnmptc |  |-  ( ph -> ( x e. ( 0 [,] 1 ) |-> ( F ` 0 ) ) e. ( II Cn ( R tX S ) ) ) | 
						
							| 25 | 8 24 | eqeltrid |  |-  ( ph -> ( ( 0 [,] 1 ) X. { ( F ` 0 ) } ) e. ( II Cn ( R tX S ) ) ) | 
						
							| 26 |  | tx1cn |  |-  ( ( R e. ( TopOn ` U. R ) /\ S e. ( TopOn ` U. S ) ) -> ( 1st |` ( U. R X. U. S ) ) e. ( ( R tX S ) Cn R ) ) | 
						
							| 27 | 13 16 26 | syl2anc |  |-  ( ph -> ( 1st |` ( U. R X. U. S ) ) e. ( ( R tX S ) Cn R ) ) | 
						
							| 28 |  | cnco |  |-  ( ( F e. ( II Cn ( R tX S ) ) /\ ( 1st |` ( U. R X. U. S ) ) e. ( ( R tX S ) Cn R ) ) -> ( ( 1st |` ( U. R X. U. S ) ) o. F ) e. ( II Cn R ) ) | 
						
							| 29 | 3 27 28 | syl2anc |  |-  ( ph -> ( ( 1st |` ( U. R X. U. S ) ) o. F ) e. ( II Cn R ) ) | 
						
							| 30 | 4 29 | eqeltrid |  |-  ( ph -> A e. ( II Cn R ) ) | 
						
							| 31 |  | fconstmpt |  |-  ( ( 0 [,] 1 ) X. { ( A ` 0 ) } ) = ( x e. ( 0 [,] 1 ) |-> ( A ` 0 ) ) | 
						
							| 32 |  | iiuni |  |-  ( 0 [,] 1 ) = U. II | 
						
							| 33 | 32 11 | cnf |  |-  ( A e. ( II Cn R ) -> A : ( 0 [,] 1 ) --> U. R ) | 
						
							| 34 | 30 33 | syl |  |-  ( ph -> A : ( 0 [,] 1 ) --> U. R ) | 
						
							| 35 |  | ffvelcdm |  |-  ( ( A : ( 0 [,] 1 ) --> U. R /\ 0 e. ( 0 [,] 1 ) ) -> ( A ` 0 ) e. U. R ) | 
						
							| 36 | 34 21 35 | sylancl |  |-  ( ph -> ( A ` 0 ) e. U. R ) | 
						
							| 37 | 10 13 36 | cnmptc |  |-  ( ph -> ( x e. ( 0 [,] 1 ) |-> ( A ` 0 ) ) e. ( II Cn R ) ) | 
						
							| 38 | 31 37 | eqeltrid |  |-  ( ph -> ( ( 0 [,] 1 ) X. { ( A ` 0 ) } ) e. ( II Cn R ) ) | 
						
							| 39 | 30 38 | phtpycn |  |-  ( ph -> ( A ( PHtpy ` R ) ( ( 0 [,] 1 ) X. { ( A ` 0 ) } ) ) C_ ( ( II tX II ) Cn R ) ) | 
						
							| 40 | 39 6 | sseldd |  |-  ( ph -> G e. ( ( II tX II ) Cn R ) ) | 
						
							| 41 |  | iitop |  |-  II e. Top | 
						
							| 42 | 41 41 32 32 | txunii |  |-  ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) = U. ( II tX II ) | 
						
							| 43 | 42 11 | cnf |  |-  ( G e. ( ( II tX II ) Cn R ) -> G : ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) --> U. R ) | 
						
							| 44 |  | ffn |  |-  ( G : ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) --> U. R -> G Fn ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) | 
						
							| 45 | 40 43 44 | 3syl |  |-  ( ph -> G Fn ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) | 
						
							| 46 |  | fnov |  |-  ( G Fn ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) <-> G = ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( x G y ) ) ) | 
						
							| 47 | 45 46 | sylib |  |-  ( ph -> G = ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( x G y ) ) ) | 
						
							| 48 | 47 40 | eqeltrrd |  |-  ( ph -> ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( x G y ) ) e. ( ( II tX II ) Cn R ) ) | 
						
							| 49 |  | tx2cn |  |-  ( ( R e. ( TopOn ` U. R ) /\ S e. ( TopOn ` U. S ) ) -> ( 2nd |` ( U. R X. U. S ) ) e. ( ( R tX S ) Cn S ) ) | 
						
							| 50 | 13 16 49 | syl2anc |  |-  ( ph -> ( 2nd |` ( U. R X. U. S ) ) e. ( ( R tX S ) Cn S ) ) | 
						
							| 51 |  | cnco |  |-  ( ( F e. ( II Cn ( R tX S ) ) /\ ( 2nd |` ( U. R X. U. S ) ) e. ( ( R tX S ) Cn S ) ) -> ( ( 2nd |` ( U. R X. U. S ) ) o. F ) e. ( II Cn S ) ) | 
						
							| 52 | 3 50 51 | syl2anc |  |-  ( ph -> ( ( 2nd |` ( U. R X. U. S ) ) o. F ) e. ( II Cn S ) ) | 
						
							| 53 | 5 52 | eqeltrid |  |-  ( ph -> B e. ( II Cn S ) ) | 
						
							| 54 |  | fconstmpt |  |-  ( ( 0 [,] 1 ) X. { ( B ` 0 ) } ) = ( x e. ( 0 [,] 1 ) |-> ( B ` 0 ) ) | 
						
							| 55 | 32 14 | cnf |  |-  ( B e. ( II Cn S ) -> B : ( 0 [,] 1 ) --> U. S ) | 
						
							| 56 | 53 55 | syl |  |-  ( ph -> B : ( 0 [,] 1 ) --> U. S ) | 
						
							| 57 |  | ffvelcdm |  |-  ( ( B : ( 0 [,] 1 ) --> U. S /\ 0 e. ( 0 [,] 1 ) ) -> ( B ` 0 ) e. U. S ) | 
						
							| 58 | 56 21 57 | sylancl |  |-  ( ph -> ( B ` 0 ) e. U. S ) | 
						
							| 59 | 10 16 58 | cnmptc |  |-  ( ph -> ( x e. ( 0 [,] 1 ) |-> ( B ` 0 ) ) e. ( II Cn S ) ) | 
						
							| 60 | 54 59 | eqeltrid |  |-  ( ph -> ( ( 0 [,] 1 ) X. { ( B ` 0 ) } ) e. ( II Cn S ) ) | 
						
							| 61 | 53 60 | phtpycn |  |-  ( ph -> ( B ( PHtpy ` S ) ( ( 0 [,] 1 ) X. { ( B ` 0 ) } ) ) C_ ( ( II tX II ) Cn S ) ) | 
						
							| 62 | 61 7 | sseldd |  |-  ( ph -> H e. ( ( II tX II ) Cn S ) ) | 
						
							| 63 | 42 14 | cnf |  |-  ( H e. ( ( II tX II ) Cn S ) -> H : ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) --> U. S ) | 
						
							| 64 |  | ffn |  |-  ( H : ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) --> U. S -> H Fn ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) | 
						
							| 65 | 62 63 64 | 3syl |  |-  ( ph -> H Fn ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) | 
						
							| 66 |  | fnov |  |-  ( H Fn ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) <-> H = ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( x H y ) ) ) | 
						
							| 67 | 65 66 | sylib |  |-  ( ph -> H = ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( x H y ) ) ) | 
						
							| 68 | 67 62 | eqeltrrd |  |-  ( ph -> ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( x H y ) ) e. ( ( II tX II ) Cn S ) ) | 
						
							| 69 | 10 10 48 68 | cnmpt2t |  |-  ( ph -> ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> <. ( x G y ) , ( x H y ) >. ) e. ( ( II tX II ) Cn ( R tX S ) ) ) | 
						
							| 70 | 30 38 | phtpyhtpy |  |-  ( ph -> ( A ( PHtpy ` R ) ( ( 0 [,] 1 ) X. { ( A ` 0 ) } ) ) C_ ( A ( II Htpy R ) ( ( 0 [,] 1 ) X. { ( A ` 0 ) } ) ) ) | 
						
							| 71 | 70 6 | sseldd |  |-  ( ph -> G e. ( A ( II Htpy R ) ( ( 0 [,] 1 ) X. { ( A ` 0 ) } ) ) ) | 
						
							| 72 | 10 30 38 71 | htpyi |  |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( ( s G 0 ) = ( A ` s ) /\ ( s G 1 ) = ( ( ( 0 [,] 1 ) X. { ( A ` 0 ) } ) ` s ) ) ) | 
						
							| 73 | 72 | simpld |  |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( s G 0 ) = ( A ` s ) ) | 
						
							| 74 | 4 | fveq1i |  |-  ( A ` s ) = ( ( ( 1st |` ( U. R X. U. S ) ) o. F ) ` s ) | 
						
							| 75 |  | fvco3 |  |-  ( ( F : ( 0 [,] 1 ) --> ( U. R X. U. S ) /\ s e. ( 0 [,] 1 ) ) -> ( ( ( 1st |` ( U. R X. U. S ) ) o. F ) ` s ) = ( ( 1st |` ( U. R X. U. S ) ) ` ( F ` s ) ) ) | 
						
							| 76 | 20 75 | sylan |  |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( ( ( 1st |` ( U. R X. U. S ) ) o. F ) ` s ) = ( ( 1st |` ( U. R X. U. S ) ) ` ( F ` s ) ) ) | 
						
							| 77 | 74 76 | eqtrid |  |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( A ` s ) = ( ( 1st |` ( U. R X. U. S ) ) ` ( F ` s ) ) ) | 
						
							| 78 |  | ffvelcdm |  |-  ( ( F : ( 0 [,] 1 ) --> ( U. R X. U. S ) /\ s e. ( 0 [,] 1 ) ) -> ( F ` s ) e. ( U. R X. U. S ) ) | 
						
							| 79 | 20 78 | sylan |  |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( F ` s ) e. ( U. R X. U. S ) ) | 
						
							| 80 |  | fvres |  |-  ( ( F ` s ) e. ( U. R X. U. S ) -> ( ( 1st |` ( U. R X. U. S ) ) ` ( F ` s ) ) = ( 1st ` ( F ` s ) ) ) | 
						
							| 81 | 79 80 | syl |  |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( ( 1st |` ( U. R X. U. S ) ) ` ( F ` s ) ) = ( 1st ` ( F ` s ) ) ) | 
						
							| 82 | 73 77 81 | 3eqtrd |  |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( s G 0 ) = ( 1st ` ( F ` s ) ) ) | 
						
							| 83 | 53 60 | phtpyhtpy |  |-  ( ph -> ( B ( PHtpy ` S ) ( ( 0 [,] 1 ) X. { ( B ` 0 ) } ) ) C_ ( B ( II Htpy S ) ( ( 0 [,] 1 ) X. { ( B ` 0 ) } ) ) ) | 
						
							| 84 | 83 7 | sseldd |  |-  ( ph -> H e. ( B ( II Htpy S ) ( ( 0 [,] 1 ) X. { ( B ` 0 ) } ) ) ) | 
						
							| 85 | 10 53 60 84 | htpyi |  |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( ( s H 0 ) = ( B ` s ) /\ ( s H 1 ) = ( ( ( 0 [,] 1 ) X. { ( B ` 0 ) } ) ` s ) ) ) | 
						
							| 86 | 85 | simpld |  |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( s H 0 ) = ( B ` s ) ) | 
						
							| 87 | 5 | fveq1i |  |-  ( B ` s ) = ( ( ( 2nd |` ( U. R X. U. S ) ) o. F ) ` s ) | 
						
							| 88 |  | fvco3 |  |-  ( ( F : ( 0 [,] 1 ) --> ( U. R X. U. S ) /\ s e. ( 0 [,] 1 ) ) -> ( ( ( 2nd |` ( U. R X. U. S ) ) o. F ) ` s ) = ( ( 2nd |` ( U. R X. U. S ) ) ` ( F ` s ) ) ) | 
						
							| 89 | 20 88 | sylan |  |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( ( ( 2nd |` ( U. R X. U. S ) ) o. F ) ` s ) = ( ( 2nd |` ( U. R X. U. S ) ) ` ( F ` s ) ) ) | 
						
							| 90 | 87 89 | eqtrid |  |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( B ` s ) = ( ( 2nd |` ( U. R X. U. S ) ) ` ( F ` s ) ) ) | 
						
							| 91 |  | fvres |  |-  ( ( F ` s ) e. ( U. R X. U. S ) -> ( ( 2nd |` ( U. R X. U. S ) ) ` ( F ` s ) ) = ( 2nd ` ( F ` s ) ) ) | 
						
							| 92 | 79 91 | syl |  |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( ( 2nd |` ( U. R X. U. S ) ) ` ( F ` s ) ) = ( 2nd ` ( F ` s ) ) ) | 
						
							| 93 | 86 90 92 | 3eqtrd |  |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( s H 0 ) = ( 2nd ` ( F ` s ) ) ) | 
						
							| 94 | 82 93 | opeq12d |  |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> <. ( s G 0 ) , ( s H 0 ) >. = <. ( 1st ` ( F ` s ) ) , ( 2nd ` ( F ` s ) ) >. ) | 
						
							| 95 |  | simpr |  |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> s e. ( 0 [,] 1 ) ) | 
						
							| 96 |  | oveq12 |  |-  ( ( x = s /\ y = 0 ) -> ( x G y ) = ( s G 0 ) ) | 
						
							| 97 |  | oveq12 |  |-  ( ( x = s /\ y = 0 ) -> ( x H y ) = ( s H 0 ) ) | 
						
							| 98 | 96 97 | opeq12d |  |-  ( ( x = s /\ y = 0 ) -> <. ( x G y ) , ( x H y ) >. = <. ( s G 0 ) , ( s H 0 ) >. ) | 
						
							| 99 |  | eqid |  |-  ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> <. ( x G y ) , ( x H y ) >. ) = ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> <. ( x G y ) , ( x H y ) >. ) | 
						
							| 100 |  | opex |  |-  <. ( s G 0 ) , ( s H 0 ) >. e. _V | 
						
							| 101 | 98 99 100 | ovmpoa |  |-  ( ( s e. ( 0 [,] 1 ) /\ 0 e. ( 0 [,] 1 ) ) -> ( s ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> <. ( x G y ) , ( x H y ) >. ) 0 ) = <. ( s G 0 ) , ( s H 0 ) >. ) | 
						
							| 102 | 95 21 101 | sylancl |  |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( s ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> <. ( x G y ) , ( x H y ) >. ) 0 ) = <. ( s G 0 ) , ( s H 0 ) >. ) | 
						
							| 103 |  | 1st2nd2 |  |-  ( ( F ` s ) e. ( U. R X. U. S ) -> ( F ` s ) = <. ( 1st ` ( F ` s ) ) , ( 2nd ` ( F ` s ) ) >. ) | 
						
							| 104 | 79 103 | syl |  |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( F ` s ) = <. ( 1st ` ( F ` s ) ) , ( 2nd ` ( F ` s ) ) >. ) | 
						
							| 105 | 94 102 104 | 3eqtr4d |  |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( s ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> <. ( x G y ) , ( x H y ) >. ) 0 ) = ( F ` s ) ) | 
						
							| 106 | 72 | simprd |  |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( s G 1 ) = ( ( ( 0 [,] 1 ) X. { ( A ` 0 ) } ) ` s ) ) | 
						
							| 107 |  | fvex |  |-  ( A ` 0 ) e. _V | 
						
							| 108 | 107 | fvconst2 |  |-  ( s e. ( 0 [,] 1 ) -> ( ( ( 0 [,] 1 ) X. { ( A ` 0 ) } ) ` s ) = ( A ` 0 ) ) | 
						
							| 109 | 108 | adantl |  |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( ( ( 0 [,] 1 ) X. { ( A ` 0 ) } ) ` s ) = ( A ` 0 ) ) | 
						
							| 110 | 4 | fveq1i |  |-  ( A ` 0 ) = ( ( ( 1st |` ( U. R X. U. S ) ) o. F ) ` 0 ) | 
						
							| 111 |  | fvco3 |  |-  ( ( F : ( 0 [,] 1 ) --> ( U. R X. U. S ) /\ 0 e. ( 0 [,] 1 ) ) -> ( ( ( 1st |` ( U. R X. U. S ) ) o. F ) ` 0 ) = ( ( 1st |` ( U. R X. U. S ) ) ` ( F ` 0 ) ) ) | 
						
							| 112 | 20 21 111 | sylancl |  |-  ( ph -> ( ( ( 1st |` ( U. R X. U. S ) ) o. F ) ` 0 ) = ( ( 1st |` ( U. R X. U. S ) ) ` ( F ` 0 ) ) ) | 
						
							| 113 |  | fvres |  |-  ( ( F ` 0 ) e. ( U. R X. U. S ) -> ( ( 1st |` ( U. R X. U. S ) ) ` ( F ` 0 ) ) = ( 1st ` ( F ` 0 ) ) ) | 
						
							| 114 | 23 113 | syl |  |-  ( ph -> ( ( 1st |` ( U. R X. U. S ) ) ` ( F ` 0 ) ) = ( 1st ` ( F ` 0 ) ) ) | 
						
							| 115 | 112 114 | eqtrd |  |-  ( ph -> ( ( ( 1st |` ( U. R X. U. S ) ) o. F ) ` 0 ) = ( 1st ` ( F ` 0 ) ) ) | 
						
							| 116 | 110 115 | eqtrid |  |-  ( ph -> ( A ` 0 ) = ( 1st ` ( F ` 0 ) ) ) | 
						
							| 117 | 116 | adantr |  |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( A ` 0 ) = ( 1st ` ( F ` 0 ) ) ) | 
						
							| 118 | 106 109 117 | 3eqtrd |  |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( s G 1 ) = ( 1st ` ( F ` 0 ) ) ) | 
						
							| 119 | 85 | simprd |  |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( s H 1 ) = ( ( ( 0 [,] 1 ) X. { ( B ` 0 ) } ) ` s ) ) | 
						
							| 120 |  | fvex |  |-  ( B ` 0 ) e. _V | 
						
							| 121 | 120 | fvconst2 |  |-  ( s e. ( 0 [,] 1 ) -> ( ( ( 0 [,] 1 ) X. { ( B ` 0 ) } ) ` s ) = ( B ` 0 ) ) | 
						
							| 122 | 121 | adantl |  |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( ( ( 0 [,] 1 ) X. { ( B ` 0 ) } ) ` s ) = ( B ` 0 ) ) | 
						
							| 123 | 5 | fveq1i |  |-  ( B ` 0 ) = ( ( ( 2nd |` ( U. R X. U. S ) ) o. F ) ` 0 ) | 
						
							| 124 |  | fvco3 |  |-  ( ( F : ( 0 [,] 1 ) --> ( U. R X. U. S ) /\ 0 e. ( 0 [,] 1 ) ) -> ( ( ( 2nd |` ( U. R X. U. S ) ) o. F ) ` 0 ) = ( ( 2nd |` ( U. R X. U. S ) ) ` ( F ` 0 ) ) ) | 
						
							| 125 | 20 21 124 | sylancl |  |-  ( ph -> ( ( ( 2nd |` ( U. R X. U. S ) ) o. F ) ` 0 ) = ( ( 2nd |` ( U. R X. U. S ) ) ` ( F ` 0 ) ) ) | 
						
							| 126 |  | fvres |  |-  ( ( F ` 0 ) e. ( U. R X. U. S ) -> ( ( 2nd |` ( U. R X. U. S ) ) ` ( F ` 0 ) ) = ( 2nd ` ( F ` 0 ) ) ) | 
						
							| 127 | 23 126 | syl |  |-  ( ph -> ( ( 2nd |` ( U. R X. U. S ) ) ` ( F ` 0 ) ) = ( 2nd ` ( F ` 0 ) ) ) | 
						
							| 128 | 125 127 | eqtrd |  |-  ( ph -> ( ( ( 2nd |` ( U. R X. U. S ) ) o. F ) ` 0 ) = ( 2nd ` ( F ` 0 ) ) ) | 
						
							| 129 | 123 128 | eqtrid |  |-  ( ph -> ( B ` 0 ) = ( 2nd ` ( F ` 0 ) ) ) | 
						
							| 130 | 129 | adantr |  |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( B ` 0 ) = ( 2nd ` ( F ` 0 ) ) ) | 
						
							| 131 | 119 122 130 | 3eqtrd |  |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( s H 1 ) = ( 2nd ` ( F ` 0 ) ) ) | 
						
							| 132 | 118 131 | opeq12d |  |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> <. ( s G 1 ) , ( s H 1 ) >. = <. ( 1st ` ( F ` 0 ) ) , ( 2nd ` ( F ` 0 ) ) >. ) | 
						
							| 133 |  | 1elunit |  |-  1 e. ( 0 [,] 1 ) | 
						
							| 134 |  | oveq12 |  |-  ( ( x = s /\ y = 1 ) -> ( x G y ) = ( s G 1 ) ) | 
						
							| 135 |  | oveq12 |  |-  ( ( x = s /\ y = 1 ) -> ( x H y ) = ( s H 1 ) ) | 
						
							| 136 | 134 135 | opeq12d |  |-  ( ( x = s /\ y = 1 ) -> <. ( x G y ) , ( x H y ) >. = <. ( s G 1 ) , ( s H 1 ) >. ) | 
						
							| 137 |  | opex |  |-  <. ( s G 1 ) , ( s H 1 ) >. e. _V | 
						
							| 138 | 136 99 137 | ovmpoa |  |-  ( ( s e. ( 0 [,] 1 ) /\ 1 e. ( 0 [,] 1 ) ) -> ( s ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> <. ( x G y ) , ( x H y ) >. ) 1 ) = <. ( s G 1 ) , ( s H 1 ) >. ) | 
						
							| 139 | 95 133 138 | sylancl |  |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( s ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> <. ( x G y ) , ( x H y ) >. ) 1 ) = <. ( s G 1 ) , ( s H 1 ) >. ) | 
						
							| 140 |  | fvex |  |-  ( F ` 0 ) e. _V | 
						
							| 141 | 140 | fvconst2 |  |-  ( s e. ( 0 [,] 1 ) -> ( ( ( 0 [,] 1 ) X. { ( F ` 0 ) } ) ` s ) = ( F ` 0 ) ) | 
						
							| 142 | 141 | adantl |  |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( ( ( 0 [,] 1 ) X. { ( F ` 0 ) } ) ` s ) = ( F ` 0 ) ) | 
						
							| 143 | 23 | adantr |  |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( F ` 0 ) e. ( U. R X. U. S ) ) | 
						
							| 144 |  | 1st2nd2 |  |-  ( ( F ` 0 ) e. ( U. R X. U. S ) -> ( F ` 0 ) = <. ( 1st ` ( F ` 0 ) ) , ( 2nd ` ( F ` 0 ) ) >. ) | 
						
							| 145 | 143 144 | syl |  |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( F ` 0 ) = <. ( 1st ` ( F ` 0 ) ) , ( 2nd ` ( F ` 0 ) ) >. ) | 
						
							| 146 | 142 145 | eqtrd |  |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( ( ( 0 [,] 1 ) X. { ( F ` 0 ) } ) ` s ) = <. ( 1st ` ( F ` 0 ) ) , ( 2nd ` ( F ` 0 ) ) >. ) | 
						
							| 147 | 132 139 146 | 3eqtr4d |  |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( s ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> <. ( x G y ) , ( x H y ) >. ) 1 ) = ( ( ( 0 [,] 1 ) X. { ( F ` 0 ) } ) ` s ) ) | 
						
							| 148 | 30 38 6 | phtpyi |  |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( ( 0 G s ) = ( A ` 0 ) /\ ( 1 G s ) = ( A ` 1 ) ) ) | 
						
							| 149 | 148 | simpld |  |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( 0 G s ) = ( A ` 0 ) ) | 
						
							| 150 | 149 117 | eqtrd |  |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( 0 G s ) = ( 1st ` ( F ` 0 ) ) ) | 
						
							| 151 | 53 60 7 | phtpyi |  |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( ( 0 H s ) = ( B ` 0 ) /\ ( 1 H s ) = ( B ` 1 ) ) ) | 
						
							| 152 | 151 | simpld |  |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( 0 H s ) = ( B ` 0 ) ) | 
						
							| 153 | 152 130 | eqtrd |  |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( 0 H s ) = ( 2nd ` ( F ` 0 ) ) ) | 
						
							| 154 | 150 153 | opeq12d |  |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> <. ( 0 G s ) , ( 0 H s ) >. = <. ( 1st ` ( F ` 0 ) ) , ( 2nd ` ( F ` 0 ) ) >. ) | 
						
							| 155 |  | oveq12 |  |-  ( ( x = 0 /\ y = s ) -> ( x G y ) = ( 0 G s ) ) | 
						
							| 156 |  | oveq12 |  |-  ( ( x = 0 /\ y = s ) -> ( x H y ) = ( 0 H s ) ) | 
						
							| 157 | 155 156 | opeq12d |  |-  ( ( x = 0 /\ y = s ) -> <. ( x G y ) , ( x H y ) >. = <. ( 0 G s ) , ( 0 H s ) >. ) | 
						
							| 158 |  | opex |  |-  <. ( 0 G s ) , ( 0 H s ) >. e. _V | 
						
							| 159 | 157 99 158 | ovmpoa |  |-  ( ( 0 e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) -> ( 0 ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> <. ( x G y ) , ( x H y ) >. ) s ) = <. ( 0 G s ) , ( 0 H s ) >. ) | 
						
							| 160 | 21 95 159 | sylancr |  |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( 0 ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> <. ( x G y ) , ( x H y ) >. ) s ) = <. ( 0 G s ) , ( 0 H s ) >. ) | 
						
							| 161 | 154 160 145 | 3eqtr4d |  |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( 0 ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> <. ( x G y ) , ( x H y ) >. ) s ) = ( F ` 0 ) ) | 
						
							| 162 | 148 | simprd |  |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( 1 G s ) = ( A ` 1 ) ) | 
						
							| 163 | 4 | fveq1i |  |-  ( A ` 1 ) = ( ( ( 1st |` ( U. R X. U. S ) ) o. F ) ` 1 ) | 
						
							| 164 |  | fvco3 |  |-  ( ( F : ( 0 [,] 1 ) --> ( U. R X. U. S ) /\ 1 e. ( 0 [,] 1 ) ) -> ( ( ( 1st |` ( U. R X. U. S ) ) o. F ) ` 1 ) = ( ( 1st |` ( U. R X. U. S ) ) ` ( F ` 1 ) ) ) | 
						
							| 165 | 20 133 164 | sylancl |  |-  ( ph -> ( ( ( 1st |` ( U. R X. U. S ) ) o. F ) ` 1 ) = ( ( 1st |` ( U. R X. U. S ) ) ` ( F ` 1 ) ) ) | 
						
							| 166 | 163 165 | eqtrid |  |-  ( ph -> ( A ` 1 ) = ( ( 1st |` ( U. R X. U. S ) ) ` ( F ` 1 ) ) ) | 
						
							| 167 |  | ffvelcdm |  |-  ( ( F : ( 0 [,] 1 ) --> ( U. R X. U. S ) /\ 1 e. ( 0 [,] 1 ) ) -> ( F ` 1 ) e. ( U. R X. U. S ) ) | 
						
							| 168 | 20 133 167 | sylancl |  |-  ( ph -> ( F ` 1 ) e. ( U. R X. U. S ) ) | 
						
							| 169 |  | fvres |  |-  ( ( F ` 1 ) e. ( U. R X. U. S ) -> ( ( 1st |` ( U. R X. U. S ) ) ` ( F ` 1 ) ) = ( 1st ` ( F ` 1 ) ) ) | 
						
							| 170 | 168 169 | syl |  |-  ( ph -> ( ( 1st |` ( U. R X. U. S ) ) ` ( F ` 1 ) ) = ( 1st ` ( F ` 1 ) ) ) | 
						
							| 171 | 166 170 | eqtrd |  |-  ( ph -> ( A ` 1 ) = ( 1st ` ( F ` 1 ) ) ) | 
						
							| 172 | 171 | adantr |  |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( A ` 1 ) = ( 1st ` ( F ` 1 ) ) ) | 
						
							| 173 | 162 172 | eqtrd |  |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( 1 G s ) = ( 1st ` ( F ` 1 ) ) ) | 
						
							| 174 | 151 | simprd |  |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( 1 H s ) = ( B ` 1 ) ) | 
						
							| 175 | 5 | fveq1i |  |-  ( B ` 1 ) = ( ( ( 2nd |` ( U. R X. U. S ) ) o. F ) ` 1 ) | 
						
							| 176 |  | fvco3 |  |-  ( ( F : ( 0 [,] 1 ) --> ( U. R X. U. S ) /\ 1 e. ( 0 [,] 1 ) ) -> ( ( ( 2nd |` ( U. R X. U. S ) ) o. F ) ` 1 ) = ( ( 2nd |` ( U. R X. U. S ) ) ` ( F ` 1 ) ) ) | 
						
							| 177 | 20 133 176 | sylancl |  |-  ( ph -> ( ( ( 2nd |` ( U. R X. U. S ) ) o. F ) ` 1 ) = ( ( 2nd |` ( U. R X. U. S ) ) ` ( F ` 1 ) ) ) | 
						
							| 178 | 175 177 | eqtrid |  |-  ( ph -> ( B ` 1 ) = ( ( 2nd |` ( U. R X. U. S ) ) ` ( F ` 1 ) ) ) | 
						
							| 179 |  | fvres |  |-  ( ( F ` 1 ) e. ( U. R X. U. S ) -> ( ( 2nd |` ( U. R X. U. S ) ) ` ( F ` 1 ) ) = ( 2nd ` ( F ` 1 ) ) ) | 
						
							| 180 | 168 179 | syl |  |-  ( ph -> ( ( 2nd |` ( U. R X. U. S ) ) ` ( F ` 1 ) ) = ( 2nd ` ( F ` 1 ) ) ) | 
						
							| 181 | 178 180 | eqtrd |  |-  ( ph -> ( B ` 1 ) = ( 2nd ` ( F ` 1 ) ) ) | 
						
							| 182 | 181 | adantr |  |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( B ` 1 ) = ( 2nd ` ( F ` 1 ) ) ) | 
						
							| 183 | 174 182 | eqtrd |  |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( 1 H s ) = ( 2nd ` ( F ` 1 ) ) ) | 
						
							| 184 | 173 183 | opeq12d |  |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> <. ( 1 G s ) , ( 1 H s ) >. = <. ( 1st ` ( F ` 1 ) ) , ( 2nd ` ( F ` 1 ) ) >. ) | 
						
							| 185 |  | oveq12 |  |-  ( ( x = 1 /\ y = s ) -> ( x G y ) = ( 1 G s ) ) | 
						
							| 186 |  | oveq12 |  |-  ( ( x = 1 /\ y = s ) -> ( x H y ) = ( 1 H s ) ) | 
						
							| 187 | 185 186 | opeq12d |  |-  ( ( x = 1 /\ y = s ) -> <. ( x G y ) , ( x H y ) >. = <. ( 1 G s ) , ( 1 H s ) >. ) | 
						
							| 188 |  | opex |  |-  <. ( 1 G s ) , ( 1 H s ) >. e. _V | 
						
							| 189 | 187 99 188 | ovmpoa |  |-  ( ( 1 e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) -> ( 1 ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> <. ( x G y ) , ( x H y ) >. ) s ) = <. ( 1 G s ) , ( 1 H s ) >. ) | 
						
							| 190 | 133 95 189 | sylancr |  |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( 1 ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> <. ( x G y ) , ( x H y ) >. ) s ) = <. ( 1 G s ) , ( 1 H s ) >. ) | 
						
							| 191 | 168 | adantr |  |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( F ` 1 ) e. ( U. R X. U. S ) ) | 
						
							| 192 |  | 1st2nd2 |  |-  ( ( F ` 1 ) e. ( U. R X. U. S ) -> ( F ` 1 ) = <. ( 1st ` ( F ` 1 ) ) , ( 2nd ` ( F ` 1 ) ) >. ) | 
						
							| 193 | 191 192 | syl |  |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( F ` 1 ) = <. ( 1st ` ( F ` 1 ) ) , ( 2nd ` ( F ` 1 ) ) >. ) | 
						
							| 194 | 184 190 193 | 3eqtr4d |  |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( 1 ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> <. ( x G y ) , ( x H y ) >. ) s ) = ( F ` 1 ) ) | 
						
							| 195 | 3 25 69 105 147 161 194 | isphtpy2d |  |-  ( ph -> ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> <. ( x G y ) , ( x H y ) >. ) e. ( F ( PHtpy ` ( R tX S ) ) ( ( 0 [,] 1 ) X. { ( F ` 0 ) } ) ) ) | 
						
							| 196 | 195 | ne0d |  |-  ( ph -> ( F ( PHtpy ` ( R tX S ) ) ( ( 0 [,] 1 ) X. { ( F ` 0 ) } ) ) =/= (/) ) | 
						
							| 197 |  | isphtpc |  |-  ( F ( ~=ph ` ( R tX S ) ) ( ( 0 [,] 1 ) X. { ( F ` 0 ) } ) <-> ( F e. ( II Cn ( R tX S ) ) /\ ( ( 0 [,] 1 ) X. { ( F ` 0 ) } ) e. ( II Cn ( R tX S ) ) /\ ( F ( PHtpy ` ( R tX S ) ) ( ( 0 [,] 1 ) X. { ( F ` 0 ) } ) ) =/= (/) ) ) | 
						
							| 198 | 3 25 196 197 | syl3anbrc |  |-  ( ph -> F ( ~=ph ` ( R tX S ) ) ( ( 0 [,] 1 ) X. { ( F ` 0 ) } ) ) |