Metamath Proof Explorer


Theorem txsconnlem

Description: Lemma for txsconn . (Contributed by Mario Carneiro, 9-Mar-2015)

Ref Expression
Hypotheses txsconn.1
|- ( ph -> R e. Top )
txsconn.2
|- ( ph -> S e. Top )
txsconn.3
|- ( ph -> F e. ( II Cn ( R tX S ) ) )
txsconn.5
|- A = ( ( 1st |` ( U. R X. U. S ) ) o. F )
txsconn.6
|- B = ( ( 2nd |` ( U. R X. U. S ) ) o. F )
txsconn.7
|- ( ph -> G e. ( A ( PHtpy ` R ) ( ( 0 [,] 1 ) X. { ( A ` 0 ) } ) ) )
txsconn.8
|- ( ph -> H e. ( B ( PHtpy ` S ) ( ( 0 [,] 1 ) X. { ( B ` 0 ) } ) ) )
Assertion txsconnlem
|- ( ph -> F ( ~=ph ` ( R tX S ) ) ( ( 0 [,] 1 ) X. { ( F ` 0 ) } ) )

Proof

Step Hyp Ref Expression
1 txsconn.1
 |-  ( ph -> R e. Top )
2 txsconn.2
 |-  ( ph -> S e. Top )
3 txsconn.3
 |-  ( ph -> F e. ( II Cn ( R tX S ) ) )
4 txsconn.5
 |-  A = ( ( 1st |` ( U. R X. U. S ) ) o. F )
5 txsconn.6
 |-  B = ( ( 2nd |` ( U. R X. U. S ) ) o. F )
6 txsconn.7
 |-  ( ph -> G e. ( A ( PHtpy ` R ) ( ( 0 [,] 1 ) X. { ( A ` 0 ) } ) ) )
7 txsconn.8
 |-  ( ph -> H e. ( B ( PHtpy ` S ) ( ( 0 [,] 1 ) X. { ( B ` 0 ) } ) ) )
8 fconstmpt
 |-  ( ( 0 [,] 1 ) X. { ( F ` 0 ) } ) = ( x e. ( 0 [,] 1 ) |-> ( F ` 0 ) )
9 iitopon
 |-  II e. ( TopOn ` ( 0 [,] 1 ) )
10 9 a1i
 |-  ( ph -> II e. ( TopOn ` ( 0 [,] 1 ) ) )
11 eqid
 |-  U. R = U. R
12 11 toptopon
 |-  ( R e. Top <-> R e. ( TopOn ` U. R ) )
13 1 12 sylib
 |-  ( ph -> R e. ( TopOn ` U. R ) )
14 eqid
 |-  U. S = U. S
15 14 toptopon
 |-  ( S e. Top <-> S e. ( TopOn ` U. S ) )
16 2 15 sylib
 |-  ( ph -> S e. ( TopOn ` U. S ) )
17 txtopon
 |-  ( ( R e. ( TopOn ` U. R ) /\ S e. ( TopOn ` U. S ) ) -> ( R tX S ) e. ( TopOn ` ( U. R X. U. S ) ) )
18 13 16 17 syl2anc
 |-  ( ph -> ( R tX S ) e. ( TopOn ` ( U. R X. U. S ) ) )
19 cnf2
 |-  ( ( II e. ( TopOn ` ( 0 [,] 1 ) ) /\ ( R tX S ) e. ( TopOn ` ( U. R X. U. S ) ) /\ F e. ( II Cn ( R tX S ) ) ) -> F : ( 0 [,] 1 ) --> ( U. R X. U. S ) )
20 10 18 3 19 syl3anc
 |-  ( ph -> F : ( 0 [,] 1 ) --> ( U. R X. U. S ) )
21 0elunit
 |-  0 e. ( 0 [,] 1 )
22 ffvelrn
 |-  ( ( F : ( 0 [,] 1 ) --> ( U. R X. U. S ) /\ 0 e. ( 0 [,] 1 ) ) -> ( F ` 0 ) e. ( U. R X. U. S ) )
23 20 21 22 sylancl
 |-  ( ph -> ( F ` 0 ) e. ( U. R X. U. S ) )
24 10 18 23 cnmptc
 |-  ( ph -> ( x e. ( 0 [,] 1 ) |-> ( F ` 0 ) ) e. ( II Cn ( R tX S ) ) )
25 8 24 eqeltrid
 |-  ( ph -> ( ( 0 [,] 1 ) X. { ( F ` 0 ) } ) e. ( II Cn ( R tX S ) ) )
26 tx1cn
 |-  ( ( R e. ( TopOn ` U. R ) /\ S e. ( TopOn ` U. S ) ) -> ( 1st |` ( U. R X. U. S ) ) e. ( ( R tX S ) Cn R ) )
27 13 16 26 syl2anc
 |-  ( ph -> ( 1st |` ( U. R X. U. S ) ) e. ( ( R tX S ) Cn R ) )
28 cnco
 |-  ( ( F e. ( II Cn ( R tX S ) ) /\ ( 1st |` ( U. R X. U. S ) ) e. ( ( R tX S ) Cn R ) ) -> ( ( 1st |` ( U. R X. U. S ) ) o. F ) e. ( II Cn R ) )
29 3 27 28 syl2anc
 |-  ( ph -> ( ( 1st |` ( U. R X. U. S ) ) o. F ) e. ( II Cn R ) )
30 4 29 eqeltrid
 |-  ( ph -> A e. ( II Cn R ) )
31 fconstmpt
 |-  ( ( 0 [,] 1 ) X. { ( A ` 0 ) } ) = ( x e. ( 0 [,] 1 ) |-> ( A ` 0 ) )
32 iiuni
 |-  ( 0 [,] 1 ) = U. II
33 32 11 cnf
 |-  ( A e. ( II Cn R ) -> A : ( 0 [,] 1 ) --> U. R )
34 30 33 syl
 |-  ( ph -> A : ( 0 [,] 1 ) --> U. R )
35 ffvelrn
 |-  ( ( A : ( 0 [,] 1 ) --> U. R /\ 0 e. ( 0 [,] 1 ) ) -> ( A ` 0 ) e. U. R )
36 34 21 35 sylancl
 |-  ( ph -> ( A ` 0 ) e. U. R )
37 10 13 36 cnmptc
 |-  ( ph -> ( x e. ( 0 [,] 1 ) |-> ( A ` 0 ) ) e. ( II Cn R ) )
38 31 37 eqeltrid
 |-  ( ph -> ( ( 0 [,] 1 ) X. { ( A ` 0 ) } ) e. ( II Cn R ) )
39 30 38 phtpycn
 |-  ( ph -> ( A ( PHtpy ` R ) ( ( 0 [,] 1 ) X. { ( A ` 0 ) } ) ) C_ ( ( II tX II ) Cn R ) )
40 39 6 sseldd
 |-  ( ph -> G e. ( ( II tX II ) Cn R ) )
41 iitop
 |-  II e. Top
42 41 41 32 32 txunii
 |-  ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) = U. ( II tX II )
43 42 11 cnf
 |-  ( G e. ( ( II tX II ) Cn R ) -> G : ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) --> U. R )
44 ffn
 |-  ( G : ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) --> U. R -> G Fn ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) )
45 40 43 44 3syl
 |-  ( ph -> G Fn ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) )
46 fnov
 |-  ( G Fn ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) <-> G = ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( x G y ) ) )
47 45 46 sylib
 |-  ( ph -> G = ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( x G y ) ) )
48 47 40 eqeltrrd
 |-  ( ph -> ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( x G y ) ) e. ( ( II tX II ) Cn R ) )
49 tx2cn
 |-  ( ( R e. ( TopOn ` U. R ) /\ S e. ( TopOn ` U. S ) ) -> ( 2nd |` ( U. R X. U. S ) ) e. ( ( R tX S ) Cn S ) )
50 13 16 49 syl2anc
 |-  ( ph -> ( 2nd |` ( U. R X. U. S ) ) e. ( ( R tX S ) Cn S ) )
51 cnco
 |-  ( ( F e. ( II Cn ( R tX S ) ) /\ ( 2nd |` ( U. R X. U. S ) ) e. ( ( R tX S ) Cn S ) ) -> ( ( 2nd |` ( U. R X. U. S ) ) o. F ) e. ( II Cn S ) )
52 3 50 51 syl2anc
 |-  ( ph -> ( ( 2nd |` ( U. R X. U. S ) ) o. F ) e. ( II Cn S ) )
53 5 52 eqeltrid
 |-  ( ph -> B e. ( II Cn S ) )
54 fconstmpt
 |-  ( ( 0 [,] 1 ) X. { ( B ` 0 ) } ) = ( x e. ( 0 [,] 1 ) |-> ( B ` 0 ) )
55 32 14 cnf
 |-  ( B e. ( II Cn S ) -> B : ( 0 [,] 1 ) --> U. S )
56 53 55 syl
 |-  ( ph -> B : ( 0 [,] 1 ) --> U. S )
57 ffvelrn
 |-  ( ( B : ( 0 [,] 1 ) --> U. S /\ 0 e. ( 0 [,] 1 ) ) -> ( B ` 0 ) e. U. S )
58 56 21 57 sylancl
 |-  ( ph -> ( B ` 0 ) e. U. S )
59 10 16 58 cnmptc
 |-  ( ph -> ( x e. ( 0 [,] 1 ) |-> ( B ` 0 ) ) e. ( II Cn S ) )
60 54 59 eqeltrid
 |-  ( ph -> ( ( 0 [,] 1 ) X. { ( B ` 0 ) } ) e. ( II Cn S ) )
61 53 60 phtpycn
 |-  ( ph -> ( B ( PHtpy ` S ) ( ( 0 [,] 1 ) X. { ( B ` 0 ) } ) ) C_ ( ( II tX II ) Cn S ) )
62 61 7 sseldd
 |-  ( ph -> H e. ( ( II tX II ) Cn S ) )
63 42 14 cnf
 |-  ( H e. ( ( II tX II ) Cn S ) -> H : ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) --> U. S )
64 ffn
 |-  ( H : ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) --> U. S -> H Fn ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) )
65 62 63 64 3syl
 |-  ( ph -> H Fn ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) )
66 fnov
 |-  ( H Fn ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) <-> H = ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( x H y ) ) )
67 65 66 sylib
 |-  ( ph -> H = ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( x H y ) ) )
68 67 62 eqeltrrd
 |-  ( ph -> ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( x H y ) ) e. ( ( II tX II ) Cn S ) )
69 10 10 48 68 cnmpt2t
 |-  ( ph -> ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> <. ( x G y ) , ( x H y ) >. ) e. ( ( II tX II ) Cn ( R tX S ) ) )
70 30 38 phtpyhtpy
 |-  ( ph -> ( A ( PHtpy ` R ) ( ( 0 [,] 1 ) X. { ( A ` 0 ) } ) ) C_ ( A ( II Htpy R ) ( ( 0 [,] 1 ) X. { ( A ` 0 ) } ) ) )
71 70 6 sseldd
 |-  ( ph -> G e. ( A ( II Htpy R ) ( ( 0 [,] 1 ) X. { ( A ` 0 ) } ) ) )
72 10 30 38 71 htpyi
 |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( ( s G 0 ) = ( A ` s ) /\ ( s G 1 ) = ( ( ( 0 [,] 1 ) X. { ( A ` 0 ) } ) ` s ) ) )
73 72 simpld
 |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( s G 0 ) = ( A ` s ) )
74 4 fveq1i
 |-  ( A ` s ) = ( ( ( 1st |` ( U. R X. U. S ) ) o. F ) ` s )
75 fvco3
 |-  ( ( F : ( 0 [,] 1 ) --> ( U. R X. U. S ) /\ s e. ( 0 [,] 1 ) ) -> ( ( ( 1st |` ( U. R X. U. S ) ) o. F ) ` s ) = ( ( 1st |` ( U. R X. U. S ) ) ` ( F ` s ) ) )
76 20 75 sylan
 |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( ( ( 1st |` ( U. R X. U. S ) ) o. F ) ` s ) = ( ( 1st |` ( U. R X. U. S ) ) ` ( F ` s ) ) )
77 74 76 syl5eq
 |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( A ` s ) = ( ( 1st |` ( U. R X. U. S ) ) ` ( F ` s ) ) )
78 ffvelrn
 |-  ( ( F : ( 0 [,] 1 ) --> ( U. R X. U. S ) /\ s e. ( 0 [,] 1 ) ) -> ( F ` s ) e. ( U. R X. U. S ) )
79 20 78 sylan
 |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( F ` s ) e. ( U. R X. U. S ) )
80 fvres
 |-  ( ( F ` s ) e. ( U. R X. U. S ) -> ( ( 1st |` ( U. R X. U. S ) ) ` ( F ` s ) ) = ( 1st ` ( F ` s ) ) )
81 79 80 syl
 |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( ( 1st |` ( U. R X. U. S ) ) ` ( F ` s ) ) = ( 1st ` ( F ` s ) ) )
82 73 77 81 3eqtrd
 |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( s G 0 ) = ( 1st ` ( F ` s ) ) )
83 53 60 phtpyhtpy
 |-  ( ph -> ( B ( PHtpy ` S ) ( ( 0 [,] 1 ) X. { ( B ` 0 ) } ) ) C_ ( B ( II Htpy S ) ( ( 0 [,] 1 ) X. { ( B ` 0 ) } ) ) )
84 83 7 sseldd
 |-  ( ph -> H e. ( B ( II Htpy S ) ( ( 0 [,] 1 ) X. { ( B ` 0 ) } ) ) )
85 10 53 60 84 htpyi
 |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( ( s H 0 ) = ( B ` s ) /\ ( s H 1 ) = ( ( ( 0 [,] 1 ) X. { ( B ` 0 ) } ) ` s ) ) )
86 85 simpld
 |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( s H 0 ) = ( B ` s ) )
87 5 fveq1i
 |-  ( B ` s ) = ( ( ( 2nd |` ( U. R X. U. S ) ) o. F ) ` s )
88 fvco3
 |-  ( ( F : ( 0 [,] 1 ) --> ( U. R X. U. S ) /\ s e. ( 0 [,] 1 ) ) -> ( ( ( 2nd |` ( U. R X. U. S ) ) o. F ) ` s ) = ( ( 2nd |` ( U. R X. U. S ) ) ` ( F ` s ) ) )
89 20 88 sylan
 |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( ( ( 2nd |` ( U. R X. U. S ) ) o. F ) ` s ) = ( ( 2nd |` ( U. R X. U. S ) ) ` ( F ` s ) ) )
90 87 89 syl5eq
 |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( B ` s ) = ( ( 2nd |` ( U. R X. U. S ) ) ` ( F ` s ) ) )
91 fvres
 |-  ( ( F ` s ) e. ( U. R X. U. S ) -> ( ( 2nd |` ( U. R X. U. S ) ) ` ( F ` s ) ) = ( 2nd ` ( F ` s ) ) )
92 79 91 syl
 |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( ( 2nd |` ( U. R X. U. S ) ) ` ( F ` s ) ) = ( 2nd ` ( F ` s ) ) )
93 86 90 92 3eqtrd
 |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( s H 0 ) = ( 2nd ` ( F ` s ) ) )
94 82 93 opeq12d
 |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> <. ( s G 0 ) , ( s H 0 ) >. = <. ( 1st ` ( F ` s ) ) , ( 2nd ` ( F ` s ) ) >. )
95 simpr
 |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> s e. ( 0 [,] 1 ) )
96 oveq12
 |-  ( ( x = s /\ y = 0 ) -> ( x G y ) = ( s G 0 ) )
97 oveq12
 |-  ( ( x = s /\ y = 0 ) -> ( x H y ) = ( s H 0 ) )
98 96 97 opeq12d
 |-  ( ( x = s /\ y = 0 ) -> <. ( x G y ) , ( x H y ) >. = <. ( s G 0 ) , ( s H 0 ) >. )
99 eqid
 |-  ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> <. ( x G y ) , ( x H y ) >. ) = ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> <. ( x G y ) , ( x H y ) >. )
100 opex
 |-  <. ( s G 0 ) , ( s H 0 ) >. e. _V
101 98 99 100 ovmpoa
 |-  ( ( s e. ( 0 [,] 1 ) /\ 0 e. ( 0 [,] 1 ) ) -> ( s ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> <. ( x G y ) , ( x H y ) >. ) 0 ) = <. ( s G 0 ) , ( s H 0 ) >. )
102 95 21 101 sylancl
 |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( s ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> <. ( x G y ) , ( x H y ) >. ) 0 ) = <. ( s G 0 ) , ( s H 0 ) >. )
103 1st2nd2
 |-  ( ( F ` s ) e. ( U. R X. U. S ) -> ( F ` s ) = <. ( 1st ` ( F ` s ) ) , ( 2nd ` ( F ` s ) ) >. )
104 79 103 syl
 |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( F ` s ) = <. ( 1st ` ( F ` s ) ) , ( 2nd ` ( F ` s ) ) >. )
105 94 102 104 3eqtr4d
 |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( s ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> <. ( x G y ) , ( x H y ) >. ) 0 ) = ( F ` s ) )
106 72 simprd
 |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( s G 1 ) = ( ( ( 0 [,] 1 ) X. { ( A ` 0 ) } ) ` s ) )
107 fvex
 |-  ( A ` 0 ) e. _V
108 107 fvconst2
 |-  ( s e. ( 0 [,] 1 ) -> ( ( ( 0 [,] 1 ) X. { ( A ` 0 ) } ) ` s ) = ( A ` 0 ) )
109 108 adantl
 |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( ( ( 0 [,] 1 ) X. { ( A ` 0 ) } ) ` s ) = ( A ` 0 ) )
110 4 fveq1i
 |-  ( A ` 0 ) = ( ( ( 1st |` ( U. R X. U. S ) ) o. F ) ` 0 )
111 fvco3
 |-  ( ( F : ( 0 [,] 1 ) --> ( U. R X. U. S ) /\ 0 e. ( 0 [,] 1 ) ) -> ( ( ( 1st |` ( U. R X. U. S ) ) o. F ) ` 0 ) = ( ( 1st |` ( U. R X. U. S ) ) ` ( F ` 0 ) ) )
112 20 21 111 sylancl
 |-  ( ph -> ( ( ( 1st |` ( U. R X. U. S ) ) o. F ) ` 0 ) = ( ( 1st |` ( U. R X. U. S ) ) ` ( F ` 0 ) ) )
113 fvres
 |-  ( ( F ` 0 ) e. ( U. R X. U. S ) -> ( ( 1st |` ( U. R X. U. S ) ) ` ( F ` 0 ) ) = ( 1st ` ( F ` 0 ) ) )
114 23 113 syl
 |-  ( ph -> ( ( 1st |` ( U. R X. U. S ) ) ` ( F ` 0 ) ) = ( 1st ` ( F ` 0 ) ) )
115 112 114 eqtrd
 |-  ( ph -> ( ( ( 1st |` ( U. R X. U. S ) ) o. F ) ` 0 ) = ( 1st ` ( F ` 0 ) ) )
116 110 115 syl5eq
 |-  ( ph -> ( A ` 0 ) = ( 1st ` ( F ` 0 ) ) )
117 116 adantr
 |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( A ` 0 ) = ( 1st ` ( F ` 0 ) ) )
118 106 109 117 3eqtrd
 |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( s G 1 ) = ( 1st ` ( F ` 0 ) ) )
119 85 simprd
 |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( s H 1 ) = ( ( ( 0 [,] 1 ) X. { ( B ` 0 ) } ) ` s ) )
120 fvex
 |-  ( B ` 0 ) e. _V
121 120 fvconst2
 |-  ( s e. ( 0 [,] 1 ) -> ( ( ( 0 [,] 1 ) X. { ( B ` 0 ) } ) ` s ) = ( B ` 0 ) )
122 121 adantl
 |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( ( ( 0 [,] 1 ) X. { ( B ` 0 ) } ) ` s ) = ( B ` 0 ) )
123 5 fveq1i
 |-  ( B ` 0 ) = ( ( ( 2nd |` ( U. R X. U. S ) ) o. F ) ` 0 )
124 fvco3
 |-  ( ( F : ( 0 [,] 1 ) --> ( U. R X. U. S ) /\ 0 e. ( 0 [,] 1 ) ) -> ( ( ( 2nd |` ( U. R X. U. S ) ) o. F ) ` 0 ) = ( ( 2nd |` ( U. R X. U. S ) ) ` ( F ` 0 ) ) )
125 20 21 124 sylancl
 |-  ( ph -> ( ( ( 2nd |` ( U. R X. U. S ) ) o. F ) ` 0 ) = ( ( 2nd |` ( U. R X. U. S ) ) ` ( F ` 0 ) ) )
126 fvres
 |-  ( ( F ` 0 ) e. ( U. R X. U. S ) -> ( ( 2nd |` ( U. R X. U. S ) ) ` ( F ` 0 ) ) = ( 2nd ` ( F ` 0 ) ) )
127 23 126 syl
 |-  ( ph -> ( ( 2nd |` ( U. R X. U. S ) ) ` ( F ` 0 ) ) = ( 2nd ` ( F ` 0 ) ) )
128 125 127 eqtrd
 |-  ( ph -> ( ( ( 2nd |` ( U. R X. U. S ) ) o. F ) ` 0 ) = ( 2nd ` ( F ` 0 ) ) )
129 123 128 syl5eq
 |-  ( ph -> ( B ` 0 ) = ( 2nd ` ( F ` 0 ) ) )
130 129 adantr
 |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( B ` 0 ) = ( 2nd ` ( F ` 0 ) ) )
131 119 122 130 3eqtrd
 |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( s H 1 ) = ( 2nd ` ( F ` 0 ) ) )
132 118 131 opeq12d
 |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> <. ( s G 1 ) , ( s H 1 ) >. = <. ( 1st ` ( F ` 0 ) ) , ( 2nd ` ( F ` 0 ) ) >. )
133 1elunit
 |-  1 e. ( 0 [,] 1 )
134 oveq12
 |-  ( ( x = s /\ y = 1 ) -> ( x G y ) = ( s G 1 ) )
135 oveq12
 |-  ( ( x = s /\ y = 1 ) -> ( x H y ) = ( s H 1 ) )
136 134 135 opeq12d
 |-  ( ( x = s /\ y = 1 ) -> <. ( x G y ) , ( x H y ) >. = <. ( s G 1 ) , ( s H 1 ) >. )
137 opex
 |-  <. ( s G 1 ) , ( s H 1 ) >. e. _V
138 136 99 137 ovmpoa
 |-  ( ( s e. ( 0 [,] 1 ) /\ 1 e. ( 0 [,] 1 ) ) -> ( s ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> <. ( x G y ) , ( x H y ) >. ) 1 ) = <. ( s G 1 ) , ( s H 1 ) >. )
139 95 133 138 sylancl
 |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( s ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> <. ( x G y ) , ( x H y ) >. ) 1 ) = <. ( s G 1 ) , ( s H 1 ) >. )
140 fvex
 |-  ( F ` 0 ) e. _V
141 140 fvconst2
 |-  ( s e. ( 0 [,] 1 ) -> ( ( ( 0 [,] 1 ) X. { ( F ` 0 ) } ) ` s ) = ( F ` 0 ) )
142 141 adantl
 |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( ( ( 0 [,] 1 ) X. { ( F ` 0 ) } ) ` s ) = ( F ` 0 ) )
143 23 adantr
 |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( F ` 0 ) e. ( U. R X. U. S ) )
144 1st2nd2
 |-  ( ( F ` 0 ) e. ( U. R X. U. S ) -> ( F ` 0 ) = <. ( 1st ` ( F ` 0 ) ) , ( 2nd ` ( F ` 0 ) ) >. )
145 143 144 syl
 |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( F ` 0 ) = <. ( 1st ` ( F ` 0 ) ) , ( 2nd ` ( F ` 0 ) ) >. )
146 142 145 eqtrd
 |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( ( ( 0 [,] 1 ) X. { ( F ` 0 ) } ) ` s ) = <. ( 1st ` ( F ` 0 ) ) , ( 2nd ` ( F ` 0 ) ) >. )
147 132 139 146 3eqtr4d
 |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( s ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> <. ( x G y ) , ( x H y ) >. ) 1 ) = ( ( ( 0 [,] 1 ) X. { ( F ` 0 ) } ) ` s ) )
148 30 38 6 phtpyi
 |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( ( 0 G s ) = ( A ` 0 ) /\ ( 1 G s ) = ( A ` 1 ) ) )
149 148 simpld
 |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( 0 G s ) = ( A ` 0 ) )
150 149 117 eqtrd
 |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( 0 G s ) = ( 1st ` ( F ` 0 ) ) )
151 53 60 7 phtpyi
 |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( ( 0 H s ) = ( B ` 0 ) /\ ( 1 H s ) = ( B ` 1 ) ) )
152 151 simpld
 |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( 0 H s ) = ( B ` 0 ) )
153 152 130 eqtrd
 |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( 0 H s ) = ( 2nd ` ( F ` 0 ) ) )
154 150 153 opeq12d
 |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> <. ( 0 G s ) , ( 0 H s ) >. = <. ( 1st ` ( F ` 0 ) ) , ( 2nd ` ( F ` 0 ) ) >. )
155 oveq12
 |-  ( ( x = 0 /\ y = s ) -> ( x G y ) = ( 0 G s ) )
156 oveq12
 |-  ( ( x = 0 /\ y = s ) -> ( x H y ) = ( 0 H s ) )
157 155 156 opeq12d
 |-  ( ( x = 0 /\ y = s ) -> <. ( x G y ) , ( x H y ) >. = <. ( 0 G s ) , ( 0 H s ) >. )
158 opex
 |-  <. ( 0 G s ) , ( 0 H s ) >. e. _V
159 157 99 158 ovmpoa
 |-  ( ( 0 e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) -> ( 0 ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> <. ( x G y ) , ( x H y ) >. ) s ) = <. ( 0 G s ) , ( 0 H s ) >. )
160 21 95 159 sylancr
 |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( 0 ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> <. ( x G y ) , ( x H y ) >. ) s ) = <. ( 0 G s ) , ( 0 H s ) >. )
161 154 160 145 3eqtr4d
 |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( 0 ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> <. ( x G y ) , ( x H y ) >. ) s ) = ( F ` 0 ) )
162 148 simprd
 |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( 1 G s ) = ( A ` 1 ) )
163 4 fveq1i
 |-  ( A ` 1 ) = ( ( ( 1st |` ( U. R X. U. S ) ) o. F ) ` 1 )
164 fvco3
 |-  ( ( F : ( 0 [,] 1 ) --> ( U. R X. U. S ) /\ 1 e. ( 0 [,] 1 ) ) -> ( ( ( 1st |` ( U. R X. U. S ) ) o. F ) ` 1 ) = ( ( 1st |` ( U. R X. U. S ) ) ` ( F ` 1 ) ) )
165 20 133 164 sylancl
 |-  ( ph -> ( ( ( 1st |` ( U. R X. U. S ) ) o. F ) ` 1 ) = ( ( 1st |` ( U. R X. U. S ) ) ` ( F ` 1 ) ) )
166 163 165 syl5eq
 |-  ( ph -> ( A ` 1 ) = ( ( 1st |` ( U. R X. U. S ) ) ` ( F ` 1 ) ) )
167 ffvelrn
 |-  ( ( F : ( 0 [,] 1 ) --> ( U. R X. U. S ) /\ 1 e. ( 0 [,] 1 ) ) -> ( F ` 1 ) e. ( U. R X. U. S ) )
168 20 133 167 sylancl
 |-  ( ph -> ( F ` 1 ) e. ( U. R X. U. S ) )
169 fvres
 |-  ( ( F ` 1 ) e. ( U. R X. U. S ) -> ( ( 1st |` ( U. R X. U. S ) ) ` ( F ` 1 ) ) = ( 1st ` ( F ` 1 ) ) )
170 168 169 syl
 |-  ( ph -> ( ( 1st |` ( U. R X. U. S ) ) ` ( F ` 1 ) ) = ( 1st ` ( F ` 1 ) ) )
171 166 170 eqtrd
 |-  ( ph -> ( A ` 1 ) = ( 1st ` ( F ` 1 ) ) )
172 171 adantr
 |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( A ` 1 ) = ( 1st ` ( F ` 1 ) ) )
173 162 172 eqtrd
 |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( 1 G s ) = ( 1st ` ( F ` 1 ) ) )
174 151 simprd
 |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( 1 H s ) = ( B ` 1 ) )
175 5 fveq1i
 |-  ( B ` 1 ) = ( ( ( 2nd |` ( U. R X. U. S ) ) o. F ) ` 1 )
176 fvco3
 |-  ( ( F : ( 0 [,] 1 ) --> ( U. R X. U. S ) /\ 1 e. ( 0 [,] 1 ) ) -> ( ( ( 2nd |` ( U. R X. U. S ) ) o. F ) ` 1 ) = ( ( 2nd |` ( U. R X. U. S ) ) ` ( F ` 1 ) ) )
177 20 133 176 sylancl
 |-  ( ph -> ( ( ( 2nd |` ( U. R X. U. S ) ) o. F ) ` 1 ) = ( ( 2nd |` ( U. R X. U. S ) ) ` ( F ` 1 ) ) )
178 175 177 syl5eq
 |-  ( ph -> ( B ` 1 ) = ( ( 2nd |` ( U. R X. U. S ) ) ` ( F ` 1 ) ) )
179 fvres
 |-  ( ( F ` 1 ) e. ( U. R X. U. S ) -> ( ( 2nd |` ( U. R X. U. S ) ) ` ( F ` 1 ) ) = ( 2nd ` ( F ` 1 ) ) )
180 168 179 syl
 |-  ( ph -> ( ( 2nd |` ( U. R X. U. S ) ) ` ( F ` 1 ) ) = ( 2nd ` ( F ` 1 ) ) )
181 178 180 eqtrd
 |-  ( ph -> ( B ` 1 ) = ( 2nd ` ( F ` 1 ) ) )
182 181 adantr
 |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( B ` 1 ) = ( 2nd ` ( F ` 1 ) ) )
183 174 182 eqtrd
 |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( 1 H s ) = ( 2nd ` ( F ` 1 ) ) )
184 173 183 opeq12d
 |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> <. ( 1 G s ) , ( 1 H s ) >. = <. ( 1st ` ( F ` 1 ) ) , ( 2nd ` ( F ` 1 ) ) >. )
185 oveq12
 |-  ( ( x = 1 /\ y = s ) -> ( x G y ) = ( 1 G s ) )
186 oveq12
 |-  ( ( x = 1 /\ y = s ) -> ( x H y ) = ( 1 H s ) )
187 185 186 opeq12d
 |-  ( ( x = 1 /\ y = s ) -> <. ( x G y ) , ( x H y ) >. = <. ( 1 G s ) , ( 1 H s ) >. )
188 opex
 |-  <. ( 1 G s ) , ( 1 H s ) >. e. _V
189 187 99 188 ovmpoa
 |-  ( ( 1 e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) -> ( 1 ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> <. ( x G y ) , ( x H y ) >. ) s ) = <. ( 1 G s ) , ( 1 H s ) >. )
190 133 95 189 sylancr
 |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( 1 ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> <. ( x G y ) , ( x H y ) >. ) s ) = <. ( 1 G s ) , ( 1 H s ) >. )
191 168 adantr
 |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( F ` 1 ) e. ( U. R X. U. S ) )
192 1st2nd2
 |-  ( ( F ` 1 ) e. ( U. R X. U. S ) -> ( F ` 1 ) = <. ( 1st ` ( F ` 1 ) ) , ( 2nd ` ( F ` 1 ) ) >. )
193 191 192 syl
 |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( F ` 1 ) = <. ( 1st ` ( F ` 1 ) ) , ( 2nd ` ( F ` 1 ) ) >. )
194 184 190 193 3eqtr4d
 |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( 1 ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> <. ( x G y ) , ( x H y ) >. ) s ) = ( F ` 1 ) )
195 3 25 69 105 147 161 194 isphtpy2d
 |-  ( ph -> ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> <. ( x G y ) , ( x H y ) >. ) e. ( F ( PHtpy ` ( R tX S ) ) ( ( 0 [,] 1 ) X. { ( F ` 0 ) } ) ) )
196 195 ne0d
 |-  ( ph -> ( F ( PHtpy ` ( R tX S ) ) ( ( 0 [,] 1 ) X. { ( F ` 0 ) } ) ) =/= (/) )
197 isphtpc
 |-  ( F ( ~=ph ` ( R tX S ) ) ( ( 0 [,] 1 ) X. { ( F ` 0 ) } ) <-> ( F e. ( II Cn ( R tX S ) ) /\ ( ( 0 [,] 1 ) X. { ( F ` 0 ) } ) e. ( II Cn ( R tX S ) ) /\ ( F ( PHtpy ` ( R tX S ) ) ( ( 0 [,] 1 ) X. { ( F ` 0 ) } ) ) =/= (/) ) )
198 3 25 196 197 syl3anbrc
 |-  ( ph -> F ( ~=ph ` ( R tX S ) ) ( ( 0 [,] 1 ) X. { ( F ` 0 ) } ) )