| Step |
Hyp |
Ref |
Expression |
| 1 |
|
txsconn.1 |
|- ( ph -> R e. Top ) |
| 2 |
|
txsconn.2 |
|- ( ph -> S e. Top ) |
| 3 |
|
txsconn.3 |
|- ( ph -> F e. ( II Cn ( R tX S ) ) ) |
| 4 |
|
txsconn.5 |
|- A = ( ( 1st |` ( U. R X. U. S ) ) o. F ) |
| 5 |
|
txsconn.6 |
|- B = ( ( 2nd |` ( U. R X. U. S ) ) o. F ) |
| 6 |
|
txsconn.7 |
|- ( ph -> G e. ( A ( PHtpy ` R ) ( ( 0 [,] 1 ) X. { ( A ` 0 ) } ) ) ) |
| 7 |
|
txsconn.8 |
|- ( ph -> H e. ( B ( PHtpy ` S ) ( ( 0 [,] 1 ) X. { ( B ` 0 ) } ) ) ) |
| 8 |
|
fconstmpt |
|- ( ( 0 [,] 1 ) X. { ( F ` 0 ) } ) = ( x e. ( 0 [,] 1 ) |-> ( F ` 0 ) ) |
| 9 |
|
iitopon |
|- II e. ( TopOn ` ( 0 [,] 1 ) ) |
| 10 |
9
|
a1i |
|- ( ph -> II e. ( TopOn ` ( 0 [,] 1 ) ) ) |
| 11 |
|
eqid |
|- U. R = U. R |
| 12 |
11
|
toptopon |
|- ( R e. Top <-> R e. ( TopOn ` U. R ) ) |
| 13 |
1 12
|
sylib |
|- ( ph -> R e. ( TopOn ` U. R ) ) |
| 14 |
|
eqid |
|- U. S = U. S |
| 15 |
14
|
toptopon |
|- ( S e. Top <-> S e. ( TopOn ` U. S ) ) |
| 16 |
2 15
|
sylib |
|- ( ph -> S e. ( TopOn ` U. S ) ) |
| 17 |
|
txtopon |
|- ( ( R e. ( TopOn ` U. R ) /\ S e. ( TopOn ` U. S ) ) -> ( R tX S ) e. ( TopOn ` ( U. R X. U. S ) ) ) |
| 18 |
13 16 17
|
syl2anc |
|- ( ph -> ( R tX S ) e. ( TopOn ` ( U. R X. U. S ) ) ) |
| 19 |
|
cnf2 |
|- ( ( II e. ( TopOn ` ( 0 [,] 1 ) ) /\ ( R tX S ) e. ( TopOn ` ( U. R X. U. S ) ) /\ F e. ( II Cn ( R tX S ) ) ) -> F : ( 0 [,] 1 ) --> ( U. R X. U. S ) ) |
| 20 |
10 18 3 19
|
syl3anc |
|- ( ph -> F : ( 0 [,] 1 ) --> ( U. R X. U. S ) ) |
| 21 |
|
0elunit |
|- 0 e. ( 0 [,] 1 ) |
| 22 |
|
ffvelcdm |
|- ( ( F : ( 0 [,] 1 ) --> ( U. R X. U. S ) /\ 0 e. ( 0 [,] 1 ) ) -> ( F ` 0 ) e. ( U. R X. U. S ) ) |
| 23 |
20 21 22
|
sylancl |
|- ( ph -> ( F ` 0 ) e. ( U. R X. U. S ) ) |
| 24 |
10 18 23
|
cnmptc |
|- ( ph -> ( x e. ( 0 [,] 1 ) |-> ( F ` 0 ) ) e. ( II Cn ( R tX S ) ) ) |
| 25 |
8 24
|
eqeltrid |
|- ( ph -> ( ( 0 [,] 1 ) X. { ( F ` 0 ) } ) e. ( II Cn ( R tX S ) ) ) |
| 26 |
|
tx1cn |
|- ( ( R e. ( TopOn ` U. R ) /\ S e. ( TopOn ` U. S ) ) -> ( 1st |` ( U. R X. U. S ) ) e. ( ( R tX S ) Cn R ) ) |
| 27 |
13 16 26
|
syl2anc |
|- ( ph -> ( 1st |` ( U. R X. U. S ) ) e. ( ( R tX S ) Cn R ) ) |
| 28 |
|
cnco |
|- ( ( F e. ( II Cn ( R tX S ) ) /\ ( 1st |` ( U. R X. U. S ) ) e. ( ( R tX S ) Cn R ) ) -> ( ( 1st |` ( U. R X. U. S ) ) o. F ) e. ( II Cn R ) ) |
| 29 |
3 27 28
|
syl2anc |
|- ( ph -> ( ( 1st |` ( U. R X. U. S ) ) o. F ) e. ( II Cn R ) ) |
| 30 |
4 29
|
eqeltrid |
|- ( ph -> A e. ( II Cn R ) ) |
| 31 |
|
fconstmpt |
|- ( ( 0 [,] 1 ) X. { ( A ` 0 ) } ) = ( x e. ( 0 [,] 1 ) |-> ( A ` 0 ) ) |
| 32 |
|
iiuni |
|- ( 0 [,] 1 ) = U. II |
| 33 |
32 11
|
cnf |
|- ( A e. ( II Cn R ) -> A : ( 0 [,] 1 ) --> U. R ) |
| 34 |
30 33
|
syl |
|- ( ph -> A : ( 0 [,] 1 ) --> U. R ) |
| 35 |
|
ffvelcdm |
|- ( ( A : ( 0 [,] 1 ) --> U. R /\ 0 e. ( 0 [,] 1 ) ) -> ( A ` 0 ) e. U. R ) |
| 36 |
34 21 35
|
sylancl |
|- ( ph -> ( A ` 0 ) e. U. R ) |
| 37 |
10 13 36
|
cnmptc |
|- ( ph -> ( x e. ( 0 [,] 1 ) |-> ( A ` 0 ) ) e. ( II Cn R ) ) |
| 38 |
31 37
|
eqeltrid |
|- ( ph -> ( ( 0 [,] 1 ) X. { ( A ` 0 ) } ) e. ( II Cn R ) ) |
| 39 |
30 38
|
phtpycn |
|- ( ph -> ( A ( PHtpy ` R ) ( ( 0 [,] 1 ) X. { ( A ` 0 ) } ) ) C_ ( ( II tX II ) Cn R ) ) |
| 40 |
39 6
|
sseldd |
|- ( ph -> G e. ( ( II tX II ) Cn R ) ) |
| 41 |
|
iitop |
|- II e. Top |
| 42 |
41 41 32 32
|
txunii |
|- ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) = U. ( II tX II ) |
| 43 |
42 11
|
cnf |
|- ( G e. ( ( II tX II ) Cn R ) -> G : ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) --> U. R ) |
| 44 |
|
ffn |
|- ( G : ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) --> U. R -> G Fn ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) |
| 45 |
40 43 44
|
3syl |
|- ( ph -> G Fn ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) |
| 46 |
|
fnov |
|- ( G Fn ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) <-> G = ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( x G y ) ) ) |
| 47 |
45 46
|
sylib |
|- ( ph -> G = ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( x G y ) ) ) |
| 48 |
47 40
|
eqeltrrd |
|- ( ph -> ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( x G y ) ) e. ( ( II tX II ) Cn R ) ) |
| 49 |
|
tx2cn |
|- ( ( R e. ( TopOn ` U. R ) /\ S e. ( TopOn ` U. S ) ) -> ( 2nd |` ( U. R X. U. S ) ) e. ( ( R tX S ) Cn S ) ) |
| 50 |
13 16 49
|
syl2anc |
|- ( ph -> ( 2nd |` ( U. R X. U. S ) ) e. ( ( R tX S ) Cn S ) ) |
| 51 |
|
cnco |
|- ( ( F e. ( II Cn ( R tX S ) ) /\ ( 2nd |` ( U. R X. U. S ) ) e. ( ( R tX S ) Cn S ) ) -> ( ( 2nd |` ( U. R X. U. S ) ) o. F ) e. ( II Cn S ) ) |
| 52 |
3 50 51
|
syl2anc |
|- ( ph -> ( ( 2nd |` ( U. R X. U. S ) ) o. F ) e. ( II Cn S ) ) |
| 53 |
5 52
|
eqeltrid |
|- ( ph -> B e. ( II Cn S ) ) |
| 54 |
|
fconstmpt |
|- ( ( 0 [,] 1 ) X. { ( B ` 0 ) } ) = ( x e. ( 0 [,] 1 ) |-> ( B ` 0 ) ) |
| 55 |
32 14
|
cnf |
|- ( B e. ( II Cn S ) -> B : ( 0 [,] 1 ) --> U. S ) |
| 56 |
53 55
|
syl |
|- ( ph -> B : ( 0 [,] 1 ) --> U. S ) |
| 57 |
|
ffvelcdm |
|- ( ( B : ( 0 [,] 1 ) --> U. S /\ 0 e. ( 0 [,] 1 ) ) -> ( B ` 0 ) e. U. S ) |
| 58 |
56 21 57
|
sylancl |
|- ( ph -> ( B ` 0 ) e. U. S ) |
| 59 |
10 16 58
|
cnmptc |
|- ( ph -> ( x e. ( 0 [,] 1 ) |-> ( B ` 0 ) ) e. ( II Cn S ) ) |
| 60 |
54 59
|
eqeltrid |
|- ( ph -> ( ( 0 [,] 1 ) X. { ( B ` 0 ) } ) e. ( II Cn S ) ) |
| 61 |
53 60
|
phtpycn |
|- ( ph -> ( B ( PHtpy ` S ) ( ( 0 [,] 1 ) X. { ( B ` 0 ) } ) ) C_ ( ( II tX II ) Cn S ) ) |
| 62 |
61 7
|
sseldd |
|- ( ph -> H e. ( ( II tX II ) Cn S ) ) |
| 63 |
42 14
|
cnf |
|- ( H e. ( ( II tX II ) Cn S ) -> H : ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) --> U. S ) |
| 64 |
|
ffn |
|- ( H : ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) --> U. S -> H Fn ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) |
| 65 |
62 63 64
|
3syl |
|- ( ph -> H Fn ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) |
| 66 |
|
fnov |
|- ( H Fn ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) <-> H = ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( x H y ) ) ) |
| 67 |
65 66
|
sylib |
|- ( ph -> H = ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( x H y ) ) ) |
| 68 |
67 62
|
eqeltrrd |
|- ( ph -> ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( x H y ) ) e. ( ( II tX II ) Cn S ) ) |
| 69 |
10 10 48 68
|
cnmpt2t |
|- ( ph -> ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> <. ( x G y ) , ( x H y ) >. ) e. ( ( II tX II ) Cn ( R tX S ) ) ) |
| 70 |
30 38
|
phtpyhtpy |
|- ( ph -> ( A ( PHtpy ` R ) ( ( 0 [,] 1 ) X. { ( A ` 0 ) } ) ) C_ ( A ( II Htpy R ) ( ( 0 [,] 1 ) X. { ( A ` 0 ) } ) ) ) |
| 71 |
70 6
|
sseldd |
|- ( ph -> G e. ( A ( II Htpy R ) ( ( 0 [,] 1 ) X. { ( A ` 0 ) } ) ) ) |
| 72 |
10 30 38 71
|
htpyi |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( ( s G 0 ) = ( A ` s ) /\ ( s G 1 ) = ( ( ( 0 [,] 1 ) X. { ( A ` 0 ) } ) ` s ) ) ) |
| 73 |
72
|
simpld |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( s G 0 ) = ( A ` s ) ) |
| 74 |
4
|
fveq1i |
|- ( A ` s ) = ( ( ( 1st |` ( U. R X. U. S ) ) o. F ) ` s ) |
| 75 |
|
fvco3 |
|- ( ( F : ( 0 [,] 1 ) --> ( U. R X. U. S ) /\ s e. ( 0 [,] 1 ) ) -> ( ( ( 1st |` ( U. R X. U. S ) ) o. F ) ` s ) = ( ( 1st |` ( U. R X. U. S ) ) ` ( F ` s ) ) ) |
| 76 |
20 75
|
sylan |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( ( ( 1st |` ( U. R X. U. S ) ) o. F ) ` s ) = ( ( 1st |` ( U. R X. U. S ) ) ` ( F ` s ) ) ) |
| 77 |
74 76
|
eqtrid |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( A ` s ) = ( ( 1st |` ( U. R X. U. S ) ) ` ( F ` s ) ) ) |
| 78 |
|
ffvelcdm |
|- ( ( F : ( 0 [,] 1 ) --> ( U. R X. U. S ) /\ s e. ( 0 [,] 1 ) ) -> ( F ` s ) e. ( U. R X. U. S ) ) |
| 79 |
20 78
|
sylan |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( F ` s ) e. ( U. R X. U. S ) ) |
| 80 |
|
fvres |
|- ( ( F ` s ) e. ( U. R X. U. S ) -> ( ( 1st |` ( U. R X. U. S ) ) ` ( F ` s ) ) = ( 1st ` ( F ` s ) ) ) |
| 81 |
79 80
|
syl |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( ( 1st |` ( U. R X. U. S ) ) ` ( F ` s ) ) = ( 1st ` ( F ` s ) ) ) |
| 82 |
73 77 81
|
3eqtrd |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( s G 0 ) = ( 1st ` ( F ` s ) ) ) |
| 83 |
53 60
|
phtpyhtpy |
|- ( ph -> ( B ( PHtpy ` S ) ( ( 0 [,] 1 ) X. { ( B ` 0 ) } ) ) C_ ( B ( II Htpy S ) ( ( 0 [,] 1 ) X. { ( B ` 0 ) } ) ) ) |
| 84 |
83 7
|
sseldd |
|- ( ph -> H e. ( B ( II Htpy S ) ( ( 0 [,] 1 ) X. { ( B ` 0 ) } ) ) ) |
| 85 |
10 53 60 84
|
htpyi |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( ( s H 0 ) = ( B ` s ) /\ ( s H 1 ) = ( ( ( 0 [,] 1 ) X. { ( B ` 0 ) } ) ` s ) ) ) |
| 86 |
85
|
simpld |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( s H 0 ) = ( B ` s ) ) |
| 87 |
5
|
fveq1i |
|- ( B ` s ) = ( ( ( 2nd |` ( U. R X. U. S ) ) o. F ) ` s ) |
| 88 |
|
fvco3 |
|- ( ( F : ( 0 [,] 1 ) --> ( U. R X. U. S ) /\ s e. ( 0 [,] 1 ) ) -> ( ( ( 2nd |` ( U. R X. U. S ) ) o. F ) ` s ) = ( ( 2nd |` ( U. R X. U. S ) ) ` ( F ` s ) ) ) |
| 89 |
20 88
|
sylan |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( ( ( 2nd |` ( U. R X. U. S ) ) o. F ) ` s ) = ( ( 2nd |` ( U. R X. U. S ) ) ` ( F ` s ) ) ) |
| 90 |
87 89
|
eqtrid |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( B ` s ) = ( ( 2nd |` ( U. R X. U. S ) ) ` ( F ` s ) ) ) |
| 91 |
|
fvres |
|- ( ( F ` s ) e. ( U. R X. U. S ) -> ( ( 2nd |` ( U. R X. U. S ) ) ` ( F ` s ) ) = ( 2nd ` ( F ` s ) ) ) |
| 92 |
79 91
|
syl |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( ( 2nd |` ( U. R X. U. S ) ) ` ( F ` s ) ) = ( 2nd ` ( F ` s ) ) ) |
| 93 |
86 90 92
|
3eqtrd |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( s H 0 ) = ( 2nd ` ( F ` s ) ) ) |
| 94 |
82 93
|
opeq12d |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> <. ( s G 0 ) , ( s H 0 ) >. = <. ( 1st ` ( F ` s ) ) , ( 2nd ` ( F ` s ) ) >. ) |
| 95 |
|
simpr |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> s e. ( 0 [,] 1 ) ) |
| 96 |
|
oveq12 |
|- ( ( x = s /\ y = 0 ) -> ( x G y ) = ( s G 0 ) ) |
| 97 |
|
oveq12 |
|- ( ( x = s /\ y = 0 ) -> ( x H y ) = ( s H 0 ) ) |
| 98 |
96 97
|
opeq12d |
|- ( ( x = s /\ y = 0 ) -> <. ( x G y ) , ( x H y ) >. = <. ( s G 0 ) , ( s H 0 ) >. ) |
| 99 |
|
eqid |
|- ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> <. ( x G y ) , ( x H y ) >. ) = ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> <. ( x G y ) , ( x H y ) >. ) |
| 100 |
|
opex |
|- <. ( s G 0 ) , ( s H 0 ) >. e. _V |
| 101 |
98 99 100
|
ovmpoa |
|- ( ( s e. ( 0 [,] 1 ) /\ 0 e. ( 0 [,] 1 ) ) -> ( s ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> <. ( x G y ) , ( x H y ) >. ) 0 ) = <. ( s G 0 ) , ( s H 0 ) >. ) |
| 102 |
95 21 101
|
sylancl |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( s ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> <. ( x G y ) , ( x H y ) >. ) 0 ) = <. ( s G 0 ) , ( s H 0 ) >. ) |
| 103 |
|
1st2nd2 |
|- ( ( F ` s ) e. ( U. R X. U. S ) -> ( F ` s ) = <. ( 1st ` ( F ` s ) ) , ( 2nd ` ( F ` s ) ) >. ) |
| 104 |
79 103
|
syl |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( F ` s ) = <. ( 1st ` ( F ` s ) ) , ( 2nd ` ( F ` s ) ) >. ) |
| 105 |
94 102 104
|
3eqtr4d |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( s ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> <. ( x G y ) , ( x H y ) >. ) 0 ) = ( F ` s ) ) |
| 106 |
72
|
simprd |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( s G 1 ) = ( ( ( 0 [,] 1 ) X. { ( A ` 0 ) } ) ` s ) ) |
| 107 |
|
fvex |
|- ( A ` 0 ) e. _V |
| 108 |
107
|
fvconst2 |
|- ( s e. ( 0 [,] 1 ) -> ( ( ( 0 [,] 1 ) X. { ( A ` 0 ) } ) ` s ) = ( A ` 0 ) ) |
| 109 |
108
|
adantl |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( ( ( 0 [,] 1 ) X. { ( A ` 0 ) } ) ` s ) = ( A ` 0 ) ) |
| 110 |
4
|
fveq1i |
|- ( A ` 0 ) = ( ( ( 1st |` ( U. R X. U. S ) ) o. F ) ` 0 ) |
| 111 |
|
fvco3 |
|- ( ( F : ( 0 [,] 1 ) --> ( U. R X. U. S ) /\ 0 e. ( 0 [,] 1 ) ) -> ( ( ( 1st |` ( U. R X. U. S ) ) o. F ) ` 0 ) = ( ( 1st |` ( U. R X. U. S ) ) ` ( F ` 0 ) ) ) |
| 112 |
20 21 111
|
sylancl |
|- ( ph -> ( ( ( 1st |` ( U. R X. U. S ) ) o. F ) ` 0 ) = ( ( 1st |` ( U. R X. U. S ) ) ` ( F ` 0 ) ) ) |
| 113 |
|
fvres |
|- ( ( F ` 0 ) e. ( U. R X. U. S ) -> ( ( 1st |` ( U. R X. U. S ) ) ` ( F ` 0 ) ) = ( 1st ` ( F ` 0 ) ) ) |
| 114 |
23 113
|
syl |
|- ( ph -> ( ( 1st |` ( U. R X. U. S ) ) ` ( F ` 0 ) ) = ( 1st ` ( F ` 0 ) ) ) |
| 115 |
112 114
|
eqtrd |
|- ( ph -> ( ( ( 1st |` ( U. R X. U. S ) ) o. F ) ` 0 ) = ( 1st ` ( F ` 0 ) ) ) |
| 116 |
110 115
|
eqtrid |
|- ( ph -> ( A ` 0 ) = ( 1st ` ( F ` 0 ) ) ) |
| 117 |
116
|
adantr |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( A ` 0 ) = ( 1st ` ( F ` 0 ) ) ) |
| 118 |
106 109 117
|
3eqtrd |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( s G 1 ) = ( 1st ` ( F ` 0 ) ) ) |
| 119 |
85
|
simprd |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( s H 1 ) = ( ( ( 0 [,] 1 ) X. { ( B ` 0 ) } ) ` s ) ) |
| 120 |
|
fvex |
|- ( B ` 0 ) e. _V |
| 121 |
120
|
fvconst2 |
|- ( s e. ( 0 [,] 1 ) -> ( ( ( 0 [,] 1 ) X. { ( B ` 0 ) } ) ` s ) = ( B ` 0 ) ) |
| 122 |
121
|
adantl |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( ( ( 0 [,] 1 ) X. { ( B ` 0 ) } ) ` s ) = ( B ` 0 ) ) |
| 123 |
5
|
fveq1i |
|- ( B ` 0 ) = ( ( ( 2nd |` ( U. R X. U. S ) ) o. F ) ` 0 ) |
| 124 |
|
fvco3 |
|- ( ( F : ( 0 [,] 1 ) --> ( U. R X. U. S ) /\ 0 e. ( 0 [,] 1 ) ) -> ( ( ( 2nd |` ( U. R X. U. S ) ) o. F ) ` 0 ) = ( ( 2nd |` ( U. R X. U. S ) ) ` ( F ` 0 ) ) ) |
| 125 |
20 21 124
|
sylancl |
|- ( ph -> ( ( ( 2nd |` ( U. R X. U. S ) ) o. F ) ` 0 ) = ( ( 2nd |` ( U. R X. U. S ) ) ` ( F ` 0 ) ) ) |
| 126 |
|
fvres |
|- ( ( F ` 0 ) e. ( U. R X. U. S ) -> ( ( 2nd |` ( U. R X. U. S ) ) ` ( F ` 0 ) ) = ( 2nd ` ( F ` 0 ) ) ) |
| 127 |
23 126
|
syl |
|- ( ph -> ( ( 2nd |` ( U. R X. U. S ) ) ` ( F ` 0 ) ) = ( 2nd ` ( F ` 0 ) ) ) |
| 128 |
125 127
|
eqtrd |
|- ( ph -> ( ( ( 2nd |` ( U. R X. U. S ) ) o. F ) ` 0 ) = ( 2nd ` ( F ` 0 ) ) ) |
| 129 |
123 128
|
eqtrid |
|- ( ph -> ( B ` 0 ) = ( 2nd ` ( F ` 0 ) ) ) |
| 130 |
129
|
adantr |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( B ` 0 ) = ( 2nd ` ( F ` 0 ) ) ) |
| 131 |
119 122 130
|
3eqtrd |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( s H 1 ) = ( 2nd ` ( F ` 0 ) ) ) |
| 132 |
118 131
|
opeq12d |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> <. ( s G 1 ) , ( s H 1 ) >. = <. ( 1st ` ( F ` 0 ) ) , ( 2nd ` ( F ` 0 ) ) >. ) |
| 133 |
|
1elunit |
|- 1 e. ( 0 [,] 1 ) |
| 134 |
|
oveq12 |
|- ( ( x = s /\ y = 1 ) -> ( x G y ) = ( s G 1 ) ) |
| 135 |
|
oveq12 |
|- ( ( x = s /\ y = 1 ) -> ( x H y ) = ( s H 1 ) ) |
| 136 |
134 135
|
opeq12d |
|- ( ( x = s /\ y = 1 ) -> <. ( x G y ) , ( x H y ) >. = <. ( s G 1 ) , ( s H 1 ) >. ) |
| 137 |
|
opex |
|- <. ( s G 1 ) , ( s H 1 ) >. e. _V |
| 138 |
136 99 137
|
ovmpoa |
|- ( ( s e. ( 0 [,] 1 ) /\ 1 e. ( 0 [,] 1 ) ) -> ( s ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> <. ( x G y ) , ( x H y ) >. ) 1 ) = <. ( s G 1 ) , ( s H 1 ) >. ) |
| 139 |
95 133 138
|
sylancl |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( s ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> <. ( x G y ) , ( x H y ) >. ) 1 ) = <. ( s G 1 ) , ( s H 1 ) >. ) |
| 140 |
|
fvex |
|- ( F ` 0 ) e. _V |
| 141 |
140
|
fvconst2 |
|- ( s e. ( 0 [,] 1 ) -> ( ( ( 0 [,] 1 ) X. { ( F ` 0 ) } ) ` s ) = ( F ` 0 ) ) |
| 142 |
141
|
adantl |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( ( ( 0 [,] 1 ) X. { ( F ` 0 ) } ) ` s ) = ( F ` 0 ) ) |
| 143 |
23
|
adantr |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( F ` 0 ) e. ( U. R X. U. S ) ) |
| 144 |
|
1st2nd2 |
|- ( ( F ` 0 ) e. ( U. R X. U. S ) -> ( F ` 0 ) = <. ( 1st ` ( F ` 0 ) ) , ( 2nd ` ( F ` 0 ) ) >. ) |
| 145 |
143 144
|
syl |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( F ` 0 ) = <. ( 1st ` ( F ` 0 ) ) , ( 2nd ` ( F ` 0 ) ) >. ) |
| 146 |
142 145
|
eqtrd |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( ( ( 0 [,] 1 ) X. { ( F ` 0 ) } ) ` s ) = <. ( 1st ` ( F ` 0 ) ) , ( 2nd ` ( F ` 0 ) ) >. ) |
| 147 |
132 139 146
|
3eqtr4d |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( s ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> <. ( x G y ) , ( x H y ) >. ) 1 ) = ( ( ( 0 [,] 1 ) X. { ( F ` 0 ) } ) ` s ) ) |
| 148 |
30 38 6
|
phtpyi |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( ( 0 G s ) = ( A ` 0 ) /\ ( 1 G s ) = ( A ` 1 ) ) ) |
| 149 |
148
|
simpld |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( 0 G s ) = ( A ` 0 ) ) |
| 150 |
149 117
|
eqtrd |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( 0 G s ) = ( 1st ` ( F ` 0 ) ) ) |
| 151 |
53 60 7
|
phtpyi |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( ( 0 H s ) = ( B ` 0 ) /\ ( 1 H s ) = ( B ` 1 ) ) ) |
| 152 |
151
|
simpld |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( 0 H s ) = ( B ` 0 ) ) |
| 153 |
152 130
|
eqtrd |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( 0 H s ) = ( 2nd ` ( F ` 0 ) ) ) |
| 154 |
150 153
|
opeq12d |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> <. ( 0 G s ) , ( 0 H s ) >. = <. ( 1st ` ( F ` 0 ) ) , ( 2nd ` ( F ` 0 ) ) >. ) |
| 155 |
|
oveq12 |
|- ( ( x = 0 /\ y = s ) -> ( x G y ) = ( 0 G s ) ) |
| 156 |
|
oveq12 |
|- ( ( x = 0 /\ y = s ) -> ( x H y ) = ( 0 H s ) ) |
| 157 |
155 156
|
opeq12d |
|- ( ( x = 0 /\ y = s ) -> <. ( x G y ) , ( x H y ) >. = <. ( 0 G s ) , ( 0 H s ) >. ) |
| 158 |
|
opex |
|- <. ( 0 G s ) , ( 0 H s ) >. e. _V |
| 159 |
157 99 158
|
ovmpoa |
|- ( ( 0 e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) -> ( 0 ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> <. ( x G y ) , ( x H y ) >. ) s ) = <. ( 0 G s ) , ( 0 H s ) >. ) |
| 160 |
21 95 159
|
sylancr |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( 0 ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> <. ( x G y ) , ( x H y ) >. ) s ) = <. ( 0 G s ) , ( 0 H s ) >. ) |
| 161 |
154 160 145
|
3eqtr4d |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( 0 ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> <. ( x G y ) , ( x H y ) >. ) s ) = ( F ` 0 ) ) |
| 162 |
148
|
simprd |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( 1 G s ) = ( A ` 1 ) ) |
| 163 |
4
|
fveq1i |
|- ( A ` 1 ) = ( ( ( 1st |` ( U. R X. U. S ) ) o. F ) ` 1 ) |
| 164 |
|
fvco3 |
|- ( ( F : ( 0 [,] 1 ) --> ( U. R X. U. S ) /\ 1 e. ( 0 [,] 1 ) ) -> ( ( ( 1st |` ( U. R X. U. S ) ) o. F ) ` 1 ) = ( ( 1st |` ( U. R X. U. S ) ) ` ( F ` 1 ) ) ) |
| 165 |
20 133 164
|
sylancl |
|- ( ph -> ( ( ( 1st |` ( U. R X. U. S ) ) o. F ) ` 1 ) = ( ( 1st |` ( U. R X. U. S ) ) ` ( F ` 1 ) ) ) |
| 166 |
163 165
|
eqtrid |
|- ( ph -> ( A ` 1 ) = ( ( 1st |` ( U. R X. U. S ) ) ` ( F ` 1 ) ) ) |
| 167 |
|
ffvelcdm |
|- ( ( F : ( 0 [,] 1 ) --> ( U. R X. U. S ) /\ 1 e. ( 0 [,] 1 ) ) -> ( F ` 1 ) e. ( U. R X. U. S ) ) |
| 168 |
20 133 167
|
sylancl |
|- ( ph -> ( F ` 1 ) e. ( U. R X. U. S ) ) |
| 169 |
|
fvres |
|- ( ( F ` 1 ) e. ( U. R X. U. S ) -> ( ( 1st |` ( U. R X. U. S ) ) ` ( F ` 1 ) ) = ( 1st ` ( F ` 1 ) ) ) |
| 170 |
168 169
|
syl |
|- ( ph -> ( ( 1st |` ( U. R X. U. S ) ) ` ( F ` 1 ) ) = ( 1st ` ( F ` 1 ) ) ) |
| 171 |
166 170
|
eqtrd |
|- ( ph -> ( A ` 1 ) = ( 1st ` ( F ` 1 ) ) ) |
| 172 |
171
|
adantr |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( A ` 1 ) = ( 1st ` ( F ` 1 ) ) ) |
| 173 |
162 172
|
eqtrd |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( 1 G s ) = ( 1st ` ( F ` 1 ) ) ) |
| 174 |
151
|
simprd |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( 1 H s ) = ( B ` 1 ) ) |
| 175 |
5
|
fveq1i |
|- ( B ` 1 ) = ( ( ( 2nd |` ( U. R X. U. S ) ) o. F ) ` 1 ) |
| 176 |
|
fvco3 |
|- ( ( F : ( 0 [,] 1 ) --> ( U. R X. U. S ) /\ 1 e. ( 0 [,] 1 ) ) -> ( ( ( 2nd |` ( U. R X. U. S ) ) o. F ) ` 1 ) = ( ( 2nd |` ( U. R X. U. S ) ) ` ( F ` 1 ) ) ) |
| 177 |
20 133 176
|
sylancl |
|- ( ph -> ( ( ( 2nd |` ( U. R X. U. S ) ) o. F ) ` 1 ) = ( ( 2nd |` ( U. R X. U. S ) ) ` ( F ` 1 ) ) ) |
| 178 |
175 177
|
eqtrid |
|- ( ph -> ( B ` 1 ) = ( ( 2nd |` ( U. R X. U. S ) ) ` ( F ` 1 ) ) ) |
| 179 |
|
fvres |
|- ( ( F ` 1 ) e. ( U. R X. U. S ) -> ( ( 2nd |` ( U. R X. U. S ) ) ` ( F ` 1 ) ) = ( 2nd ` ( F ` 1 ) ) ) |
| 180 |
168 179
|
syl |
|- ( ph -> ( ( 2nd |` ( U. R X. U. S ) ) ` ( F ` 1 ) ) = ( 2nd ` ( F ` 1 ) ) ) |
| 181 |
178 180
|
eqtrd |
|- ( ph -> ( B ` 1 ) = ( 2nd ` ( F ` 1 ) ) ) |
| 182 |
181
|
adantr |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( B ` 1 ) = ( 2nd ` ( F ` 1 ) ) ) |
| 183 |
174 182
|
eqtrd |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( 1 H s ) = ( 2nd ` ( F ` 1 ) ) ) |
| 184 |
173 183
|
opeq12d |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> <. ( 1 G s ) , ( 1 H s ) >. = <. ( 1st ` ( F ` 1 ) ) , ( 2nd ` ( F ` 1 ) ) >. ) |
| 185 |
|
oveq12 |
|- ( ( x = 1 /\ y = s ) -> ( x G y ) = ( 1 G s ) ) |
| 186 |
|
oveq12 |
|- ( ( x = 1 /\ y = s ) -> ( x H y ) = ( 1 H s ) ) |
| 187 |
185 186
|
opeq12d |
|- ( ( x = 1 /\ y = s ) -> <. ( x G y ) , ( x H y ) >. = <. ( 1 G s ) , ( 1 H s ) >. ) |
| 188 |
|
opex |
|- <. ( 1 G s ) , ( 1 H s ) >. e. _V |
| 189 |
187 99 188
|
ovmpoa |
|- ( ( 1 e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) -> ( 1 ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> <. ( x G y ) , ( x H y ) >. ) s ) = <. ( 1 G s ) , ( 1 H s ) >. ) |
| 190 |
133 95 189
|
sylancr |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( 1 ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> <. ( x G y ) , ( x H y ) >. ) s ) = <. ( 1 G s ) , ( 1 H s ) >. ) |
| 191 |
168
|
adantr |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( F ` 1 ) e. ( U. R X. U. S ) ) |
| 192 |
|
1st2nd2 |
|- ( ( F ` 1 ) e. ( U. R X. U. S ) -> ( F ` 1 ) = <. ( 1st ` ( F ` 1 ) ) , ( 2nd ` ( F ` 1 ) ) >. ) |
| 193 |
191 192
|
syl |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( F ` 1 ) = <. ( 1st ` ( F ` 1 ) ) , ( 2nd ` ( F ` 1 ) ) >. ) |
| 194 |
184 190 193
|
3eqtr4d |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( 1 ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> <. ( x G y ) , ( x H y ) >. ) s ) = ( F ` 1 ) ) |
| 195 |
3 25 69 105 147 161 194
|
isphtpy2d |
|- ( ph -> ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> <. ( x G y ) , ( x H y ) >. ) e. ( F ( PHtpy ` ( R tX S ) ) ( ( 0 [,] 1 ) X. { ( F ` 0 ) } ) ) ) |
| 196 |
195
|
ne0d |
|- ( ph -> ( F ( PHtpy ` ( R tX S ) ) ( ( 0 [,] 1 ) X. { ( F ` 0 ) } ) ) =/= (/) ) |
| 197 |
|
isphtpc |
|- ( F ( ~=ph ` ( R tX S ) ) ( ( 0 [,] 1 ) X. { ( F ` 0 ) } ) <-> ( F e. ( II Cn ( R tX S ) ) /\ ( ( 0 [,] 1 ) X. { ( F ` 0 ) } ) e. ( II Cn ( R tX S ) ) /\ ( F ( PHtpy ` ( R tX S ) ) ( ( 0 [,] 1 ) X. { ( F ` 0 ) } ) ) =/= (/) ) ) |
| 198 |
3 25 196 197
|
syl3anbrc |
|- ( ph -> F ( ~=ph ` ( R tX S ) ) ( ( 0 [,] 1 ) X. { ( F ` 0 ) } ) ) |