| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sconnpconn |  |-  ( R e. SConn -> R e. PConn ) | 
						
							| 2 |  | sconnpconn |  |-  ( S e. SConn -> S e. PConn ) | 
						
							| 3 |  | txpconn |  |-  ( ( R e. PConn /\ S e. PConn ) -> ( R tX S ) e. PConn ) | 
						
							| 4 | 1 2 3 | syl2an |  |-  ( ( R e. SConn /\ S e. SConn ) -> ( R tX S ) e. PConn ) | 
						
							| 5 |  | simpll |  |-  ( ( ( R e. SConn /\ S e. SConn ) /\ ( f e. ( II Cn ( R tX S ) ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> R e. SConn ) | 
						
							| 6 |  | simprl |  |-  ( ( ( R e. SConn /\ S e. SConn ) /\ ( f e. ( II Cn ( R tX S ) ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> f e. ( II Cn ( R tX S ) ) ) | 
						
							| 7 |  | sconntop |  |-  ( R e. SConn -> R e. Top ) | 
						
							| 8 | 7 | ad2antrr |  |-  ( ( ( R e. SConn /\ S e. SConn ) /\ ( f e. ( II Cn ( R tX S ) ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> R e. Top ) | 
						
							| 9 |  | eqid |  |-  U. R = U. R | 
						
							| 10 | 9 | toptopon |  |-  ( R e. Top <-> R e. ( TopOn ` U. R ) ) | 
						
							| 11 | 8 10 | sylib |  |-  ( ( ( R e. SConn /\ S e. SConn ) /\ ( f e. ( II Cn ( R tX S ) ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> R e. ( TopOn ` U. R ) ) | 
						
							| 12 |  | sconntop |  |-  ( S e. SConn -> S e. Top ) | 
						
							| 13 | 12 | ad2antlr |  |-  ( ( ( R e. SConn /\ S e. SConn ) /\ ( f e. ( II Cn ( R tX S ) ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> S e. Top ) | 
						
							| 14 |  | eqid |  |-  U. S = U. S | 
						
							| 15 | 14 | toptopon |  |-  ( S e. Top <-> S e. ( TopOn ` U. S ) ) | 
						
							| 16 | 13 15 | sylib |  |-  ( ( ( R e. SConn /\ S e. SConn ) /\ ( f e. ( II Cn ( R tX S ) ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> S e. ( TopOn ` U. S ) ) | 
						
							| 17 |  | tx1cn |  |-  ( ( R e. ( TopOn ` U. R ) /\ S e. ( TopOn ` U. S ) ) -> ( 1st |` ( U. R X. U. S ) ) e. ( ( R tX S ) Cn R ) ) | 
						
							| 18 | 11 16 17 | syl2anc |  |-  ( ( ( R e. SConn /\ S e. SConn ) /\ ( f e. ( II Cn ( R tX S ) ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> ( 1st |` ( U. R X. U. S ) ) e. ( ( R tX S ) Cn R ) ) | 
						
							| 19 |  | cnco |  |-  ( ( f e. ( II Cn ( R tX S ) ) /\ ( 1st |` ( U. R X. U. S ) ) e. ( ( R tX S ) Cn R ) ) -> ( ( 1st |` ( U. R X. U. S ) ) o. f ) e. ( II Cn R ) ) | 
						
							| 20 | 6 18 19 | syl2anc |  |-  ( ( ( R e. SConn /\ S e. SConn ) /\ ( f e. ( II Cn ( R tX S ) ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> ( ( 1st |` ( U. R X. U. S ) ) o. f ) e. ( II Cn R ) ) | 
						
							| 21 |  | simprr |  |-  ( ( ( R e. SConn /\ S e. SConn ) /\ ( f e. ( II Cn ( R tX S ) ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> ( f ` 0 ) = ( f ` 1 ) ) | 
						
							| 22 | 21 | fveq2d |  |-  ( ( ( R e. SConn /\ S e. SConn ) /\ ( f e. ( II Cn ( R tX S ) ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> ( ( 1st |` ( U. R X. U. S ) ) ` ( f ` 0 ) ) = ( ( 1st |` ( U. R X. U. S ) ) ` ( f ` 1 ) ) ) | 
						
							| 23 |  | iitopon |  |-  II e. ( TopOn ` ( 0 [,] 1 ) ) | 
						
							| 24 | 23 | a1i |  |-  ( ( ( R e. SConn /\ S e. SConn ) /\ ( f e. ( II Cn ( R tX S ) ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> II e. ( TopOn ` ( 0 [,] 1 ) ) ) | 
						
							| 25 |  | txtopon |  |-  ( ( R e. ( TopOn ` U. R ) /\ S e. ( TopOn ` U. S ) ) -> ( R tX S ) e. ( TopOn ` ( U. R X. U. S ) ) ) | 
						
							| 26 | 11 16 25 | syl2anc |  |-  ( ( ( R e. SConn /\ S e. SConn ) /\ ( f e. ( II Cn ( R tX S ) ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> ( R tX S ) e. ( TopOn ` ( U. R X. U. S ) ) ) | 
						
							| 27 |  | cnf2 |  |-  ( ( II e. ( TopOn ` ( 0 [,] 1 ) ) /\ ( R tX S ) e. ( TopOn ` ( U. R X. U. S ) ) /\ f e. ( II Cn ( R tX S ) ) ) -> f : ( 0 [,] 1 ) --> ( U. R X. U. S ) ) | 
						
							| 28 | 24 26 6 27 | syl3anc |  |-  ( ( ( R e. SConn /\ S e. SConn ) /\ ( f e. ( II Cn ( R tX S ) ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> f : ( 0 [,] 1 ) --> ( U. R X. U. S ) ) | 
						
							| 29 |  | 0elunit |  |-  0 e. ( 0 [,] 1 ) | 
						
							| 30 |  | fvco3 |  |-  ( ( f : ( 0 [,] 1 ) --> ( U. R X. U. S ) /\ 0 e. ( 0 [,] 1 ) ) -> ( ( ( 1st |` ( U. R X. U. S ) ) o. f ) ` 0 ) = ( ( 1st |` ( U. R X. U. S ) ) ` ( f ` 0 ) ) ) | 
						
							| 31 | 28 29 30 | sylancl |  |-  ( ( ( R e. SConn /\ S e. SConn ) /\ ( f e. ( II Cn ( R tX S ) ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> ( ( ( 1st |` ( U. R X. U. S ) ) o. f ) ` 0 ) = ( ( 1st |` ( U. R X. U. S ) ) ` ( f ` 0 ) ) ) | 
						
							| 32 |  | 1elunit |  |-  1 e. ( 0 [,] 1 ) | 
						
							| 33 |  | fvco3 |  |-  ( ( f : ( 0 [,] 1 ) --> ( U. R X. U. S ) /\ 1 e. ( 0 [,] 1 ) ) -> ( ( ( 1st |` ( U. R X. U. S ) ) o. f ) ` 1 ) = ( ( 1st |` ( U. R X. U. S ) ) ` ( f ` 1 ) ) ) | 
						
							| 34 | 28 32 33 | sylancl |  |-  ( ( ( R e. SConn /\ S e. SConn ) /\ ( f e. ( II Cn ( R tX S ) ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> ( ( ( 1st |` ( U. R X. U. S ) ) o. f ) ` 1 ) = ( ( 1st |` ( U. R X. U. S ) ) ` ( f ` 1 ) ) ) | 
						
							| 35 | 22 31 34 | 3eqtr4d |  |-  ( ( ( R e. SConn /\ S e. SConn ) /\ ( f e. ( II Cn ( R tX S ) ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> ( ( ( 1st |` ( U. R X. U. S ) ) o. f ) ` 0 ) = ( ( ( 1st |` ( U. R X. U. S ) ) o. f ) ` 1 ) ) | 
						
							| 36 |  | sconnpht |  |-  ( ( R e. SConn /\ ( ( 1st |` ( U. R X. U. S ) ) o. f ) e. ( II Cn R ) /\ ( ( ( 1st |` ( U. R X. U. S ) ) o. f ) ` 0 ) = ( ( ( 1st |` ( U. R X. U. S ) ) o. f ) ` 1 ) ) -> ( ( 1st |` ( U. R X. U. S ) ) o. f ) ( ~=ph ` R ) ( ( 0 [,] 1 ) X. { ( ( ( 1st |` ( U. R X. U. S ) ) o. f ) ` 0 ) } ) ) | 
						
							| 37 | 5 20 35 36 | syl3anc |  |-  ( ( ( R e. SConn /\ S e. SConn ) /\ ( f e. ( II Cn ( R tX S ) ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> ( ( 1st |` ( U. R X. U. S ) ) o. f ) ( ~=ph ` R ) ( ( 0 [,] 1 ) X. { ( ( ( 1st |` ( U. R X. U. S ) ) o. f ) ` 0 ) } ) ) | 
						
							| 38 |  | isphtpc |  |-  ( ( ( 1st |` ( U. R X. U. S ) ) o. f ) ( ~=ph ` R ) ( ( 0 [,] 1 ) X. { ( ( ( 1st |` ( U. R X. U. S ) ) o. f ) ` 0 ) } ) <-> ( ( ( 1st |` ( U. R X. U. S ) ) o. f ) e. ( II Cn R ) /\ ( ( 0 [,] 1 ) X. { ( ( ( 1st |` ( U. R X. U. S ) ) o. f ) ` 0 ) } ) e. ( II Cn R ) /\ ( ( ( 1st |` ( U. R X. U. S ) ) o. f ) ( PHtpy ` R ) ( ( 0 [,] 1 ) X. { ( ( ( 1st |` ( U. R X. U. S ) ) o. f ) ` 0 ) } ) ) =/= (/) ) ) | 
						
							| 39 | 37 38 | sylib |  |-  ( ( ( R e. SConn /\ S e. SConn ) /\ ( f e. ( II Cn ( R tX S ) ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> ( ( ( 1st |` ( U. R X. U. S ) ) o. f ) e. ( II Cn R ) /\ ( ( 0 [,] 1 ) X. { ( ( ( 1st |` ( U. R X. U. S ) ) o. f ) ` 0 ) } ) e. ( II Cn R ) /\ ( ( ( 1st |` ( U. R X. U. S ) ) o. f ) ( PHtpy ` R ) ( ( 0 [,] 1 ) X. { ( ( ( 1st |` ( U. R X. U. S ) ) o. f ) ` 0 ) } ) ) =/= (/) ) ) | 
						
							| 40 | 39 | simp3d |  |-  ( ( ( R e. SConn /\ S e. SConn ) /\ ( f e. ( II Cn ( R tX S ) ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> ( ( ( 1st |` ( U. R X. U. S ) ) o. f ) ( PHtpy ` R ) ( ( 0 [,] 1 ) X. { ( ( ( 1st |` ( U. R X. U. S ) ) o. f ) ` 0 ) } ) ) =/= (/) ) | 
						
							| 41 |  | n0 |  |-  ( ( ( ( 1st |` ( U. R X. U. S ) ) o. f ) ( PHtpy ` R ) ( ( 0 [,] 1 ) X. { ( ( ( 1st |` ( U. R X. U. S ) ) o. f ) ` 0 ) } ) ) =/= (/) <-> E. g g e. ( ( ( 1st |` ( U. R X. U. S ) ) o. f ) ( PHtpy ` R ) ( ( 0 [,] 1 ) X. { ( ( ( 1st |` ( U. R X. U. S ) ) o. f ) ` 0 ) } ) ) ) | 
						
							| 42 | 40 41 | sylib |  |-  ( ( ( R e. SConn /\ S e. SConn ) /\ ( f e. ( II Cn ( R tX S ) ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> E. g g e. ( ( ( 1st |` ( U. R X. U. S ) ) o. f ) ( PHtpy ` R ) ( ( 0 [,] 1 ) X. { ( ( ( 1st |` ( U. R X. U. S ) ) o. f ) ` 0 ) } ) ) ) | 
						
							| 43 |  | simplr |  |-  ( ( ( R e. SConn /\ S e. SConn ) /\ ( f e. ( II Cn ( R tX S ) ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> S e. SConn ) | 
						
							| 44 |  | tx2cn |  |-  ( ( R e. ( TopOn ` U. R ) /\ S e. ( TopOn ` U. S ) ) -> ( 2nd |` ( U. R X. U. S ) ) e. ( ( R tX S ) Cn S ) ) | 
						
							| 45 | 11 16 44 | syl2anc |  |-  ( ( ( R e. SConn /\ S e. SConn ) /\ ( f e. ( II Cn ( R tX S ) ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> ( 2nd |` ( U. R X. U. S ) ) e. ( ( R tX S ) Cn S ) ) | 
						
							| 46 |  | cnco |  |-  ( ( f e. ( II Cn ( R tX S ) ) /\ ( 2nd |` ( U. R X. U. S ) ) e. ( ( R tX S ) Cn S ) ) -> ( ( 2nd |` ( U. R X. U. S ) ) o. f ) e. ( II Cn S ) ) | 
						
							| 47 | 6 45 46 | syl2anc |  |-  ( ( ( R e. SConn /\ S e. SConn ) /\ ( f e. ( II Cn ( R tX S ) ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> ( ( 2nd |` ( U. R X. U. S ) ) o. f ) e. ( II Cn S ) ) | 
						
							| 48 | 21 | fveq2d |  |-  ( ( ( R e. SConn /\ S e. SConn ) /\ ( f e. ( II Cn ( R tX S ) ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> ( ( 2nd |` ( U. R X. U. S ) ) ` ( f ` 0 ) ) = ( ( 2nd |` ( U. R X. U. S ) ) ` ( f ` 1 ) ) ) | 
						
							| 49 |  | fvco3 |  |-  ( ( f : ( 0 [,] 1 ) --> ( U. R X. U. S ) /\ 0 e. ( 0 [,] 1 ) ) -> ( ( ( 2nd |` ( U. R X. U. S ) ) o. f ) ` 0 ) = ( ( 2nd |` ( U. R X. U. S ) ) ` ( f ` 0 ) ) ) | 
						
							| 50 | 28 29 49 | sylancl |  |-  ( ( ( R e. SConn /\ S e. SConn ) /\ ( f e. ( II Cn ( R tX S ) ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> ( ( ( 2nd |` ( U. R X. U. S ) ) o. f ) ` 0 ) = ( ( 2nd |` ( U. R X. U. S ) ) ` ( f ` 0 ) ) ) | 
						
							| 51 |  | fvco3 |  |-  ( ( f : ( 0 [,] 1 ) --> ( U. R X. U. S ) /\ 1 e. ( 0 [,] 1 ) ) -> ( ( ( 2nd |` ( U. R X. U. S ) ) o. f ) ` 1 ) = ( ( 2nd |` ( U. R X. U. S ) ) ` ( f ` 1 ) ) ) | 
						
							| 52 | 28 32 51 | sylancl |  |-  ( ( ( R e. SConn /\ S e. SConn ) /\ ( f e. ( II Cn ( R tX S ) ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> ( ( ( 2nd |` ( U. R X. U. S ) ) o. f ) ` 1 ) = ( ( 2nd |` ( U. R X. U. S ) ) ` ( f ` 1 ) ) ) | 
						
							| 53 | 48 50 52 | 3eqtr4d |  |-  ( ( ( R e. SConn /\ S e. SConn ) /\ ( f e. ( II Cn ( R tX S ) ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> ( ( ( 2nd |` ( U. R X. U. S ) ) o. f ) ` 0 ) = ( ( ( 2nd |` ( U. R X. U. S ) ) o. f ) ` 1 ) ) | 
						
							| 54 |  | sconnpht |  |-  ( ( S e. SConn /\ ( ( 2nd |` ( U. R X. U. S ) ) o. f ) e. ( II Cn S ) /\ ( ( ( 2nd |` ( U. R X. U. S ) ) o. f ) ` 0 ) = ( ( ( 2nd |` ( U. R X. U. S ) ) o. f ) ` 1 ) ) -> ( ( 2nd |` ( U. R X. U. S ) ) o. f ) ( ~=ph ` S ) ( ( 0 [,] 1 ) X. { ( ( ( 2nd |` ( U. R X. U. S ) ) o. f ) ` 0 ) } ) ) | 
						
							| 55 | 43 47 53 54 | syl3anc |  |-  ( ( ( R e. SConn /\ S e. SConn ) /\ ( f e. ( II Cn ( R tX S ) ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> ( ( 2nd |` ( U. R X. U. S ) ) o. f ) ( ~=ph ` S ) ( ( 0 [,] 1 ) X. { ( ( ( 2nd |` ( U. R X. U. S ) ) o. f ) ` 0 ) } ) ) | 
						
							| 56 |  | isphtpc |  |-  ( ( ( 2nd |` ( U. R X. U. S ) ) o. f ) ( ~=ph ` S ) ( ( 0 [,] 1 ) X. { ( ( ( 2nd |` ( U. R X. U. S ) ) o. f ) ` 0 ) } ) <-> ( ( ( 2nd |` ( U. R X. U. S ) ) o. f ) e. ( II Cn S ) /\ ( ( 0 [,] 1 ) X. { ( ( ( 2nd |` ( U. R X. U. S ) ) o. f ) ` 0 ) } ) e. ( II Cn S ) /\ ( ( ( 2nd |` ( U. R X. U. S ) ) o. f ) ( PHtpy ` S ) ( ( 0 [,] 1 ) X. { ( ( ( 2nd |` ( U. R X. U. S ) ) o. f ) ` 0 ) } ) ) =/= (/) ) ) | 
						
							| 57 | 55 56 | sylib |  |-  ( ( ( R e. SConn /\ S e. SConn ) /\ ( f e. ( II Cn ( R tX S ) ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> ( ( ( 2nd |` ( U. R X. U. S ) ) o. f ) e. ( II Cn S ) /\ ( ( 0 [,] 1 ) X. { ( ( ( 2nd |` ( U. R X. U. S ) ) o. f ) ` 0 ) } ) e. ( II Cn S ) /\ ( ( ( 2nd |` ( U. R X. U. S ) ) o. f ) ( PHtpy ` S ) ( ( 0 [,] 1 ) X. { ( ( ( 2nd |` ( U. R X. U. S ) ) o. f ) ` 0 ) } ) ) =/= (/) ) ) | 
						
							| 58 | 57 | simp3d |  |-  ( ( ( R e. SConn /\ S e. SConn ) /\ ( f e. ( II Cn ( R tX S ) ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> ( ( ( 2nd |` ( U. R X. U. S ) ) o. f ) ( PHtpy ` S ) ( ( 0 [,] 1 ) X. { ( ( ( 2nd |` ( U. R X. U. S ) ) o. f ) ` 0 ) } ) ) =/= (/) ) | 
						
							| 59 |  | n0 |  |-  ( ( ( ( 2nd |` ( U. R X. U. S ) ) o. f ) ( PHtpy ` S ) ( ( 0 [,] 1 ) X. { ( ( ( 2nd |` ( U. R X. U. S ) ) o. f ) ` 0 ) } ) ) =/= (/) <-> E. h h e. ( ( ( 2nd |` ( U. R X. U. S ) ) o. f ) ( PHtpy ` S ) ( ( 0 [,] 1 ) X. { ( ( ( 2nd |` ( U. R X. U. S ) ) o. f ) ` 0 ) } ) ) ) | 
						
							| 60 | 58 59 | sylib |  |-  ( ( ( R e. SConn /\ S e. SConn ) /\ ( f e. ( II Cn ( R tX S ) ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> E. h h e. ( ( ( 2nd |` ( U. R X. U. S ) ) o. f ) ( PHtpy ` S ) ( ( 0 [,] 1 ) X. { ( ( ( 2nd |` ( U. R X. U. S ) ) o. f ) ` 0 ) } ) ) ) | 
						
							| 61 |  | exdistrv |  |-  ( E. g E. h ( g e. ( ( ( 1st |` ( U. R X. U. S ) ) o. f ) ( PHtpy ` R ) ( ( 0 [,] 1 ) X. { ( ( ( 1st |` ( U. R X. U. S ) ) o. f ) ` 0 ) } ) ) /\ h e. ( ( ( 2nd |` ( U. R X. U. S ) ) o. f ) ( PHtpy ` S ) ( ( 0 [,] 1 ) X. { ( ( ( 2nd |` ( U. R X. U. S ) ) o. f ) ` 0 ) } ) ) ) <-> ( E. g g e. ( ( ( 1st |` ( U. R X. U. S ) ) o. f ) ( PHtpy ` R ) ( ( 0 [,] 1 ) X. { ( ( ( 1st |` ( U. R X. U. S ) ) o. f ) ` 0 ) } ) ) /\ E. h h e. ( ( ( 2nd |` ( U. R X. U. S ) ) o. f ) ( PHtpy ` S ) ( ( 0 [,] 1 ) X. { ( ( ( 2nd |` ( U. R X. U. S ) ) o. f ) ` 0 ) } ) ) ) ) | 
						
							| 62 | 8 | adantr |  |-  ( ( ( ( R e. SConn /\ S e. SConn ) /\ ( f e. ( II Cn ( R tX S ) ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) /\ ( g e. ( ( ( 1st |` ( U. R X. U. S ) ) o. f ) ( PHtpy ` R ) ( ( 0 [,] 1 ) X. { ( ( ( 1st |` ( U. R X. U. S ) ) o. f ) ` 0 ) } ) ) /\ h e. ( ( ( 2nd |` ( U. R X. U. S ) ) o. f ) ( PHtpy ` S ) ( ( 0 [,] 1 ) X. { ( ( ( 2nd |` ( U. R X. U. S ) ) o. f ) ` 0 ) } ) ) ) ) -> R e. Top ) | 
						
							| 63 | 13 | adantr |  |-  ( ( ( ( R e. SConn /\ S e. SConn ) /\ ( f e. ( II Cn ( R tX S ) ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) /\ ( g e. ( ( ( 1st |` ( U. R X. U. S ) ) o. f ) ( PHtpy ` R ) ( ( 0 [,] 1 ) X. { ( ( ( 1st |` ( U. R X. U. S ) ) o. f ) ` 0 ) } ) ) /\ h e. ( ( ( 2nd |` ( U. R X. U. S ) ) o. f ) ( PHtpy ` S ) ( ( 0 [,] 1 ) X. { ( ( ( 2nd |` ( U. R X. U. S ) ) o. f ) ` 0 ) } ) ) ) ) -> S e. Top ) | 
						
							| 64 | 6 | adantr |  |-  ( ( ( ( R e. SConn /\ S e. SConn ) /\ ( f e. ( II Cn ( R tX S ) ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) /\ ( g e. ( ( ( 1st |` ( U. R X. U. S ) ) o. f ) ( PHtpy ` R ) ( ( 0 [,] 1 ) X. { ( ( ( 1st |` ( U. R X. U. S ) ) o. f ) ` 0 ) } ) ) /\ h e. ( ( ( 2nd |` ( U. R X. U. S ) ) o. f ) ( PHtpy ` S ) ( ( 0 [,] 1 ) X. { ( ( ( 2nd |` ( U. R X. U. S ) ) o. f ) ` 0 ) } ) ) ) ) -> f e. ( II Cn ( R tX S ) ) ) | 
						
							| 65 |  | eqid |  |-  ( ( 1st |` ( U. R X. U. S ) ) o. f ) = ( ( 1st |` ( U. R X. U. S ) ) o. f ) | 
						
							| 66 |  | eqid |  |-  ( ( 2nd |` ( U. R X. U. S ) ) o. f ) = ( ( 2nd |` ( U. R X. U. S ) ) o. f ) | 
						
							| 67 |  | simprl |  |-  ( ( ( ( R e. SConn /\ S e. SConn ) /\ ( f e. ( II Cn ( R tX S ) ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) /\ ( g e. ( ( ( 1st |` ( U. R X. U. S ) ) o. f ) ( PHtpy ` R ) ( ( 0 [,] 1 ) X. { ( ( ( 1st |` ( U. R X. U. S ) ) o. f ) ` 0 ) } ) ) /\ h e. ( ( ( 2nd |` ( U. R X. U. S ) ) o. f ) ( PHtpy ` S ) ( ( 0 [,] 1 ) X. { ( ( ( 2nd |` ( U. R X. U. S ) ) o. f ) ` 0 ) } ) ) ) ) -> g e. ( ( ( 1st |` ( U. R X. U. S ) ) o. f ) ( PHtpy ` R ) ( ( 0 [,] 1 ) X. { ( ( ( 1st |` ( U. R X. U. S ) ) o. f ) ` 0 ) } ) ) ) | 
						
							| 68 |  | simprr |  |-  ( ( ( ( R e. SConn /\ S e. SConn ) /\ ( f e. ( II Cn ( R tX S ) ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) /\ ( g e. ( ( ( 1st |` ( U. R X. U. S ) ) o. f ) ( PHtpy ` R ) ( ( 0 [,] 1 ) X. { ( ( ( 1st |` ( U. R X. U. S ) ) o. f ) ` 0 ) } ) ) /\ h e. ( ( ( 2nd |` ( U. R X. U. S ) ) o. f ) ( PHtpy ` S ) ( ( 0 [,] 1 ) X. { ( ( ( 2nd |` ( U. R X. U. S ) ) o. f ) ` 0 ) } ) ) ) ) -> h e. ( ( ( 2nd |` ( U. R X. U. S ) ) o. f ) ( PHtpy ` S ) ( ( 0 [,] 1 ) X. { ( ( ( 2nd |` ( U. R X. U. S ) ) o. f ) ` 0 ) } ) ) ) | 
						
							| 69 | 62 63 64 65 66 67 68 | txsconnlem |  |-  ( ( ( ( R e. SConn /\ S e. SConn ) /\ ( f e. ( II Cn ( R tX S ) ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) /\ ( g e. ( ( ( 1st |` ( U. R X. U. S ) ) o. f ) ( PHtpy ` R ) ( ( 0 [,] 1 ) X. { ( ( ( 1st |` ( U. R X. U. S ) ) o. f ) ` 0 ) } ) ) /\ h e. ( ( ( 2nd |` ( U. R X. U. S ) ) o. f ) ( PHtpy ` S ) ( ( 0 [,] 1 ) X. { ( ( ( 2nd |` ( U. R X. U. S ) ) o. f ) ` 0 ) } ) ) ) ) -> f ( ~=ph ` ( R tX S ) ) ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) ) | 
						
							| 70 | 69 | ex |  |-  ( ( ( R e. SConn /\ S e. SConn ) /\ ( f e. ( II Cn ( R tX S ) ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> ( ( g e. ( ( ( 1st |` ( U. R X. U. S ) ) o. f ) ( PHtpy ` R ) ( ( 0 [,] 1 ) X. { ( ( ( 1st |` ( U. R X. U. S ) ) o. f ) ` 0 ) } ) ) /\ h e. ( ( ( 2nd |` ( U. R X. U. S ) ) o. f ) ( PHtpy ` S ) ( ( 0 [,] 1 ) X. { ( ( ( 2nd |` ( U. R X. U. S ) ) o. f ) ` 0 ) } ) ) ) -> f ( ~=ph ` ( R tX S ) ) ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) ) ) | 
						
							| 71 | 70 | exlimdvv |  |-  ( ( ( R e. SConn /\ S e. SConn ) /\ ( f e. ( II Cn ( R tX S ) ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> ( E. g E. h ( g e. ( ( ( 1st |` ( U. R X. U. S ) ) o. f ) ( PHtpy ` R ) ( ( 0 [,] 1 ) X. { ( ( ( 1st |` ( U. R X. U. S ) ) o. f ) ` 0 ) } ) ) /\ h e. ( ( ( 2nd |` ( U. R X. U. S ) ) o. f ) ( PHtpy ` S ) ( ( 0 [,] 1 ) X. { ( ( ( 2nd |` ( U. R X. U. S ) ) o. f ) ` 0 ) } ) ) ) -> f ( ~=ph ` ( R tX S ) ) ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) ) ) | 
						
							| 72 | 61 71 | biimtrrid |  |-  ( ( ( R e. SConn /\ S e. SConn ) /\ ( f e. ( II Cn ( R tX S ) ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> ( ( E. g g e. ( ( ( 1st |` ( U. R X. U. S ) ) o. f ) ( PHtpy ` R ) ( ( 0 [,] 1 ) X. { ( ( ( 1st |` ( U. R X. U. S ) ) o. f ) ` 0 ) } ) ) /\ E. h h e. ( ( ( 2nd |` ( U. R X. U. S ) ) o. f ) ( PHtpy ` S ) ( ( 0 [,] 1 ) X. { ( ( ( 2nd |` ( U. R X. U. S ) ) o. f ) ` 0 ) } ) ) ) -> f ( ~=ph ` ( R tX S ) ) ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) ) ) | 
						
							| 73 | 42 60 72 | mp2and |  |-  ( ( ( R e. SConn /\ S e. SConn ) /\ ( f e. ( II Cn ( R tX S ) ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> f ( ~=ph ` ( R tX S ) ) ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) ) | 
						
							| 74 | 73 | expr |  |-  ( ( ( R e. SConn /\ S e. SConn ) /\ f e. ( II Cn ( R tX S ) ) ) -> ( ( f ` 0 ) = ( f ` 1 ) -> f ( ~=ph ` ( R tX S ) ) ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) ) ) | 
						
							| 75 | 74 | ralrimiva |  |-  ( ( R e. SConn /\ S e. SConn ) -> A. f e. ( II Cn ( R tX S ) ) ( ( f ` 0 ) = ( f ` 1 ) -> f ( ~=ph ` ( R tX S ) ) ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) ) ) | 
						
							| 76 |  | issconn |  |-  ( ( R tX S ) e. SConn <-> ( ( R tX S ) e. PConn /\ A. f e. ( II Cn ( R tX S ) ) ( ( f ` 0 ) = ( f ` 1 ) -> f ( ~=ph ` ( R tX S ) ) ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) ) ) ) | 
						
							| 77 | 4 75 76 | sylanbrc |  |-  ( ( R e. SConn /\ S e. SConn ) -> ( R tX S ) e. SConn ) |