Metamath Proof Explorer


Theorem txsconn

Description: The topological product of two simply connected spaces is simply connected. (Contributed by Mario Carneiro, 12-Feb-2015)

Ref Expression
Assertion txsconn RSConnSSConnR×tSSConn

Proof

Step Hyp Ref Expression
1 sconnpconn RSConnRPConn
2 sconnpconn SSConnSPConn
3 txpconn RPConnSPConnR×tSPConn
4 1 2 3 syl2an RSConnSSConnR×tSPConn
5 simpll RSConnSSConnfIICnR×tSf0=f1RSConn
6 simprl RSConnSSConnfIICnR×tSf0=f1fIICnR×tS
7 sconntop RSConnRTop
8 7 ad2antrr RSConnSSConnfIICnR×tSf0=f1RTop
9 eqid R=R
10 9 toptopon RTopRTopOnR
11 8 10 sylib RSConnSSConnfIICnR×tSf0=f1RTopOnR
12 sconntop SSConnSTop
13 12 ad2antlr RSConnSSConnfIICnR×tSf0=f1STop
14 eqid S=S
15 14 toptopon STopSTopOnS
16 13 15 sylib RSConnSSConnfIICnR×tSf0=f1STopOnS
17 tx1cn RTopOnRSTopOnS1stR×SR×tSCnR
18 11 16 17 syl2anc RSConnSSConnfIICnR×tSf0=f11stR×SR×tSCnR
19 cnco fIICnR×tS1stR×SR×tSCnR1stR×SfIICnR
20 6 18 19 syl2anc RSConnSSConnfIICnR×tSf0=f11stR×SfIICnR
21 simprr RSConnSSConnfIICnR×tSf0=f1f0=f1
22 21 fveq2d RSConnSSConnfIICnR×tSf0=f11stR×Sf0=1stR×Sf1
23 iitopon IITopOn01
24 23 a1i RSConnSSConnfIICnR×tSf0=f1IITopOn01
25 txtopon RTopOnRSTopOnSR×tSTopOnR×S
26 11 16 25 syl2anc RSConnSSConnfIICnR×tSf0=f1R×tSTopOnR×S
27 cnf2 IITopOn01R×tSTopOnR×SfIICnR×tSf:01R×S
28 24 26 6 27 syl3anc RSConnSSConnfIICnR×tSf0=f1f:01R×S
29 0elunit 001
30 fvco3 f:01R×S0011stR×Sf0=1stR×Sf0
31 28 29 30 sylancl RSConnSSConnfIICnR×tSf0=f11stR×Sf0=1stR×Sf0
32 1elunit 101
33 fvco3 f:01R×S1011stR×Sf1=1stR×Sf1
34 28 32 33 sylancl RSConnSSConnfIICnR×tSf0=f11stR×Sf1=1stR×Sf1
35 22 31 34 3eqtr4d RSConnSSConnfIICnR×tSf0=f11stR×Sf0=1stR×Sf1
36 sconnpht RSConn1stR×SfIICnR1stR×Sf0=1stR×Sf11stR×SfphR01×1stR×Sf0
37 5 20 35 36 syl3anc RSConnSSConnfIICnR×tSf0=f11stR×SfphR01×1stR×Sf0
38 isphtpc 1stR×SfphR01×1stR×Sf01stR×SfIICnR01×1stR×Sf0IICnR1stR×SfPHtpyR01×1stR×Sf0
39 37 38 sylib RSConnSSConnfIICnR×tSf0=f11stR×SfIICnR01×1stR×Sf0IICnR1stR×SfPHtpyR01×1stR×Sf0
40 39 simp3d RSConnSSConnfIICnR×tSf0=f11stR×SfPHtpyR01×1stR×Sf0
41 n0 1stR×SfPHtpyR01×1stR×Sf0gg1stR×SfPHtpyR01×1stR×Sf0
42 40 41 sylib RSConnSSConnfIICnR×tSf0=f1gg1stR×SfPHtpyR01×1stR×Sf0
43 simplr RSConnSSConnfIICnR×tSf0=f1SSConn
44 tx2cn RTopOnRSTopOnS2ndR×SR×tSCnS
45 11 16 44 syl2anc RSConnSSConnfIICnR×tSf0=f12ndR×SR×tSCnS
46 cnco fIICnR×tS2ndR×SR×tSCnS2ndR×SfIICnS
47 6 45 46 syl2anc RSConnSSConnfIICnR×tSf0=f12ndR×SfIICnS
48 21 fveq2d RSConnSSConnfIICnR×tSf0=f12ndR×Sf0=2ndR×Sf1
49 fvco3 f:01R×S0012ndR×Sf0=2ndR×Sf0
50 28 29 49 sylancl RSConnSSConnfIICnR×tSf0=f12ndR×Sf0=2ndR×Sf0
51 fvco3 f:01R×S1012ndR×Sf1=2ndR×Sf1
52 28 32 51 sylancl RSConnSSConnfIICnR×tSf0=f12ndR×Sf1=2ndR×Sf1
53 48 50 52 3eqtr4d RSConnSSConnfIICnR×tSf0=f12ndR×Sf0=2ndR×Sf1
54 sconnpht SSConn2ndR×SfIICnS2ndR×Sf0=2ndR×Sf12ndR×SfphS01×2ndR×Sf0
55 43 47 53 54 syl3anc RSConnSSConnfIICnR×tSf0=f12ndR×SfphS01×2ndR×Sf0
56 isphtpc 2ndR×SfphS01×2ndR×Sf02ndR×SfIICnS01×2ndR×Sf0IICnS2ndR×SfPHtpyS01×2ndR×Sf0
57 55 56 sylib RSConnSSConnfIICnR×tSf0=f12ndR×SfIICnS01×2ndR×Sf0IICnS2ndR×SfPHtpyS01×2ndR×Sf0
58 57 simp3d RSConnSSConnfIICnR×tSf0=f12ndR×SfPHtpyS01×2ndR×Sf0
59 n0 2ndR×SfPHtpyS01×2ndR×Sf0hh2ndR×SfPHtpyS01×2ndR×Sf0
60 58 59 sylib RSConnSSConnfIICnR×tSf0=f1hh2ndR×SfPHtpyS01×2ndR×Sf0
61 exdistrv ghg1stR×SfPHtpyR01×1stR×Sf0h2ndR×SfPHtpyS01×2ndR×Sf0gg1stR×SfPHtpyR01×1stR×Sf0hh2ndR×SfPHtpyS01×2ndR×Sf0
62 8 adantr RSConnSSConnfIICnR×tSf0=f1g1stR×SfPHtpyR01×1stR×Sf0h2ndR×SfPHtpyS01×2ndR×Sf0RTop
63 13 adantr RSConnSSConnfIICnR×tSf0=f1g1stR×SfPHtpyR01×1stR×Sf0h2ndR×SfPHtpyS01×2ndR×Sf0STop
64 6 adantr RSConnSSConnfIICnR×tSf0=f1g1stR×SfPHtpyR01×1stR×Sf0h2ndR×SfPHtpyS01×2ndR×Sf0fIICnR×tS
65 eqid 1stR×Sf=1stR×Sf
66 eqid 2ndR×Sf=2ndR×Sf
67 simprl RSConnSSConnfIICnR×tSf0=f1g1stR×SfPHtpyR01×1stR×Sf0h2ndR×SfPHtpyS01×2ndR×Sf0g1stR×SfPHtpyR01×1stR×Sf0
68 simprr RSConnSSConnfIICnR×tSf0=f1g1stR×SfPHtpyR01×1stR×Sf0h2ndR×SfPHtpyS01×2ndR×Sf0h2ndR×SfPHtpyS01×2ndR×Sf0
69 62 63 64 65 66 67 68 txsconnlem RSConnSSConnfIICnR×tSf0=f1g1stR×SfPHtpyR01×1stR×Sf0h2ndR×SfPHtpyS01×2ndR×Sf0fphR×tS01×f0
70 69 ex RSConnSSConnfIICnR×tSf0=f1g1stR×SfPHtpyR01×1stR×Sf0h2ndR×SfPHtpyS01×2ndR×Sf0fphR×tS01×f0
71 70 exlimdvv RSConnSSConnfIICnR×tSf0=f1ghg1stR×SfPHtpyR01×1stR×Sf0h2ndR×SfPHtpyS01×2ndR×Sf0fphR×tS01×f0
72 61 71 biimtrrid RSConnSSConnfIICnR×tSf0=f1gg1stR×SfPHtpyR01×1stR×Sf0hh2ndR×SfPHtpyS01×2ndR×Sf0fphR×tS01×f0
73 42 60 72 mp2and RSConnSSConnfIICnR×tSf0=f1fphR×tS01×f0
74 73 expr RSConnSSConnfIICnR×tSf0=f1fphR×tS01×f0
75 74 ralrimiva RSConnSSConnfIICnR×tSf0=f1fphR×tS01×f0
76 issconn R×tSSConnR×tSPConnfIICnR×tSf0=f1fphR×tS01×f0
77 4 75 76 sylanbrc RSConnSSConnR×tSSConn