Metamath Proof Explorer


Theorem r10

Description: Value of the cumulative hierarchy of sets function at (/) . Part of Definition 9.9 of TakeutiZaring p. 76. (Contributed by NM, 2-Sep-2003) (Revised by Mario Carneiro, 10-Sep-2013)

Ref Expression
Assertion r10
|- ( R1 ` (/) ) = (/)

Proof

Step Hyp Ref Expression
1 df-r1
 |-  R1 = rec ( ( x e. _V |-> ~P x ) , (/) )
2 1 fveq1i
 |-  ( R1 ` (/) ) = ( rec ( ( x e. _V |-> ~P x ) , (/) ) ` (/) )
3 0ex
 |-  (/) e. _V
4 3 rdg0
 |-  ( rec ( ( x e. _V |-> ~P x ) , (/) ) ` (/) ) = (/)
5 2 4 eqtri
 |-  ( R1 ` (/) ) = (/)