Description: The set of hereditarily finite sets is a Tarski class. (The Tarski-Grothendieck Axiom is not needed for this theorem.) (Contributed by Mario Carneiro, 28-May-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | r1omtsk | |- ( R1 ` _om ) e. Tarski |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omina | |- _om e. Inacc |
|
| 2 | inatsk | |- ( _om e. Inacc -> ( R1 ` _om ) e. Tarski ) |
|
| 3 | 1 2 | ax-mp | |- ( R1 ` _om ) e. Tarski |