Description: A set is a subset of the value of the cumulative hierarchy of sets function iff it is an element of the value at the successor. (Contributed by BTernaryTau, 15-Jan-2026)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | r1ssel | |- ( B e. On -> ( A C_ ( R1 ` B ) <-> A e. ( R1 ` suc B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r1suc | |- ( B e. On -> ( R1 ` suc B ) = ~P ( R1 ` B ) ) |
|
| 2 | 1 | eleq2d | |- ( B e. On -> ( A e. ( R1 ` suc B ) <-> A e. ~P ( R1 ` B ) ) ) |
| 3 | fvex | |- ( R1 ` B ) e. _V |
|
| 4 | 3 | elpw2 | |- ( A e. ~P ( R1 ` B ) <-> A C_ ( R1 ` B ) ) |
| 5 | 2 4 | bitr2di | |- ( B e. On -> ( A C_ ( R1 ` B ) <-> A e. ( R1 ` suc B ) ) ) |