Metamath Proof Explorer


Theorem r1ssel

Description: A set is a subset of the value of the cumulative hierarchy of sets function iff it is an element of the value at the successor. (Contributed by BTernaryTau, 15-Jan-2026)

Ref Expression
Assertion r1ssel
|- ( B e. On -> ( A C_ ( R1 ` B ) <-> A e. ( R1 ` suc B ) ) )

Proof

Step Hyp Ref Expression
1 r1suc
 |-  ( B e. On -> ( R1 ` suc B ) = ~P ( R1 ` B ) )
2 1 eleq2d
 |-  ( B e. On -> ( A e. ( R1 ` suc B ) <-> A e. ~P ( R1 ` B ) ) )
3 fvex
 |-  ( R1 ` B ) e. _V
4 3 elpw2
 |-  ( A e. ~P ( R1 ` B ) <-> A C_ ( R1 ` B ) )
5 2 4 bitr2di
 |-  ( B e. On -> ( A C_ ( R1 ` B ) <-> A e. ( R1 ` suc B ) ) )