Metamath Proof Explorer


Theorem r1ssel

Description: A set is a subset of the value of the cumulative hierarchy of sets function iff it is an element of the value at the successor. (Contributed by BTernaryTau, 15-Jan-2026)

Ref Expression
Assertion r1ssel B On A R1 B A R1 suc B

Proof

Step Hyp Ref Expression
1 r1suc B On R1 suc B = 𝒫 R1 B
2 1 eleq2d B On A R1 suc B A 𝒫 R1 B
3 fvex R1 B V
4 3 elpw2 A 𝒫 R1 B A R1 B
5 2 4 bitr2di B On A R1 B A R1 suc B