Metamath Proof Explorer


Theorem r1ssel

Description: A set is a subset of the value of the cumulative hierarchy of sets function iff it is an element of the value at the successor. (Contributed by BTernaryTau, 15-Jan-2026)

Ref Expression
Assertion r1ssel ( 𝐵 ∈ On → ( 𝐴 ⊆ ( 𝑅1𝐵 ) ↔ 𝐴 ∈ ( 𝑅1 ‘ suc 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 r1suc ( 𝐵 ∈ On → ( 𝑅1 ‘ suc 𝐵 ) = 𝒫 ( 𝑅1𝐵 ) )
2 1 eleq2d ( 𝐵 ∈ On → ( 𝐴 ∈ ( 𝑅1 ‘ suc 𝐵 ) ↔ 𝐴 ∈ 𝒫 ( 𝑅1𝐵 ) ) )
3 fvex ( 𝑅1𝐵 ) ∈ V
4 3 elpw2 ( 𝐴 ∈ 𝒫 ( 𝑅1𝐵 ) ↔ 𝐴 ⊆ ( 𝑅1𝐵 ) )
5 2 4 bitr2di ( 𝐵 ∈ On → ( 𝐴 ⊆ ( 𝑅1𝐵 ) ↔ 𝐴 ∈ ( 𝑅1 ‘ suc 𝐵 ) ) )