Description: A set is a subset of the value of the cumulative hierarchy of sets function iff it is an element of the value at the successor. (Contributed by BTernaryTau, 15-Jan-2026)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | r1ssel | ⊢ ( 𝐵 ∈ On → ( 𝐴 ⊆ ( 𝑅1 ‘ 𝐵 ) ↔ 𝐴 ∈ ( 𝑅1 ‘ suc 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r1suc | ⊢ ( 𝐵 ∈ On → ( 𝑅1 ‘ suc 𝐵 ) = 𝒫 ( 𝑅1 ‘ 𝐵 ) ) | |
| 2 | 1 | eleq2d | ⊢ ( 𝐵 ∈ On → ( 𝐴 ∈ ( 𝑅1 ‘ suc 𝐵 ) ↔ 𝐴 ∈ 𝒫 ( 𝑅1 ‘ 𝐵 ) ) ) |
| 3 | fvex | ⊢ ( 𝑅1 ‘ 𝐵 ) ∈ V | |
| 4 | 3 | elpw2 | ⊢ ( 𝐴 ∈ 𝒫 ( 𝑅1 ‘ 𝐵 ) ↔ 𝐴 ⊆ ( 𝑅1 ‘ 𝐵 ) ) |
| 5 | 2 4 | bitr2di | ⊢ ( 𝐵 ∈ On → ( 𝐴 ⊆ ( 𝑅1 ‘ 𝐵 ) ↔ 𝐴 ∈ ( 𝑅1 ‘ suc 𝐵 ) ) ) |