Metamath Proof Explorer


Theorem rabbida

Description: Equivalent wff's yield equal restricted class abstractions (deduction form). Version of rabbidva with disjoint variable condition replaced by nonfreeness hypothesis. (Contributed by BJ, 27-Apr-2019) Avoid ax-10 , ax-11 . (Revised by Wolf Lammen, 14-Mar-2025)

Ref Expression
Hypotheses rabbida.n
|- F/ x ph
rabbida.1
|- ( ( ph /\ x e. A ) -> ( ps <-> ch ) )
Assertion rabbida
|- ( ph -> { x e. A | ps } = { x e. A | ch } )

Proof

Step Hyp Ref Expression
1 rabbida.n
 |-  F/ x ph
2 rabbida.1
 |-  ( ( ph /\ x e. A ) -> ( ps <-> ch ) )
3 2 pm5.32da
 |-  ( ph -> ( ( x e. A /\ ps ) <-> ( x e. A /\ ch ) ) )
4 1 3 rabbida4
 |-  ( ph -> { x e. A | ps } = { x e. A | ch } )