Description: Deduction form of rabeq . Note that contrary to rabeq it has no disjoint variable condition. (Contributed by BJ, 27-Apr-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rabeqd.nf | |- F/ x ph |
|
| rabeqd.1 | |- ( ph -> A = B ) |
||
| Assertion | rabeqd | |- ( ph -> { x e. A | ps } = { x e. B | ps } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabeqd.nf | |- F/ x ph |
|
| 2 | rabeqd.1 | |- ( ph -> A = B ) |
|
| 3 | eleq2 | |- ( A = B -> ( x e. A <-> x e. B ) ) |
|
| 4 | 3 | anbi1d | |- ( A = B -> ( ( x e. A /\ ps ) <-> ( x e. B /\ ps ) ) ) |
| 5 | 2 4 | syl | |- ( ph -> ( ( x e. A /\ ps ) <-> ( x e. B /\ ps ) ) ) |
| 6 | 1 5 | rabbida4 | |- ( ph -> { x e. A | ps } = { x e. B | ps } ) |