Description: All elements of a class are elements of a class equal to this class. (Contributed by AV, 30-Oct-2020) (Proof shortened by Wolf Lammen, 18-Jul-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | raleleq | |- ( A = B -> A. x e. A x e. B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralel | |- A. x e. B x e. B |
|
| 2 | raleq | |- ( A = B -> ( A. x e. A x e. B <-> A. x e. B x e. B ) ) |
|
| 3 | 1 2 | mpbiri | |- ( A = B -> A. x e. A x e. B ) |