Metamath Proof Explorer


Theorem raleleq

Description: All elements of a class are elements of a class equal to this class. (Contributed by AV, 30-Oct-2020) Avoid ax-8 . (Revised by Wolf Lammen, 9-Mar-2025)

Ref Expression
Assertion raleleq A=BxAxB

Proof

Step Hyp Ref Expression
1 dfcleq A=BxxAxB
2 biimp xAxBxAxB
3 2 alimi xxAxBxxAxB
4 1 3 sylbi A=BxxAxB
5 df-ral xAxBxxAxB
6 4 5 sylibr A=BxAxB