| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ramsey.c |  |-  C = ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) | 
						
							| 2 |  | ramcl |  |-  ( ( M e. NN0 /\ R e. Fin /\ F : R --> NN0 ) -> ( M Ramsey F ) e. NN0 ) | 
						
							| 3 |  | eqid |  |-  { n e. NN0 | A. s ( n <_ ( # ` s ) -> A. f e. ( R ^m ( s C M ) ) E. c e. R E. x e. ~P s ( ( F ` c ) <_ ( # ` x ) /\ ( x C M ) C_ ( `' f " { c } ) ) ) } = { n e. NN0 | A. s ( n <_ ( # ` s ) -> A. f e. ( R ^m ( s C M ) ) E. c e. R E. x e. ~P s ( ( F ` c ) <_ ( # ` x ) /\ ( x C M ) C_ ( `' f " { c } ) ) ) } | 
						
							| 4 | 1 3 | ramtcl2 |  |-  ( ( M e. NN0 /\ R e. Fin /\ F : R --> NN0 ) -> ( ( M Ramsey F ) e. NN0 <-> { n e. NN0 | A. s ( n <_ ( # ` s ) -> A. f e. ( R ^m ( s C M ) ) E. c e. R E. x e. ~P s ( ( F ` c ) <_ ( # ` x ) /\ ( x C M ) C_ ( `' f " { c } ) ) ) } =/= (/) ) ) | 
						
							| 5 | 2 4 | mpbid |  |-  ( ( M e. NN0 /\ R e. Fin /\ F : R --> NN0 ) -> { n e. NN0 | A. s ( n <_ ( # ` s ) -> A. f e. ( R ^m ( s C M ) ) E. c e. R E. x e. ~P s ( ( F ` c ) <_ ( # ` x ) /\ ( x C M ) C_ ( `' f " { c } ) ) ) } =/= (/) ) | 
						
							| 6 |  | rabn0 |  |-  ( { n e. NN0 | A. s ( n <_ ( # ` s ) -> A. f e. ( R ^m ( s C M ) ) E. c e. R E. x e. ~P s ( ( F ` c ) <_ ( # ` x ) /\ ( x C M ) C_ ( `' f " { c } ) ) ) } =/= (/) <-> E. n e. NN0 A. s ( n <_ ( # ` s ) -> A. f e. ( R ^m ( s C M ) ) E. c e. R E. x e. ~P s ( ( F ` c ) <_ ( # ` x ) /\ ( x C M ) C_ ( `' f " { c } ) ) ) ) | 
						
							| 7 | 5 6 | sylib |  |-  ( ( M e. NN0 /\ R e. Fin /\ F : R --> NN0 ) -> E. n e. NN0 A. s ( n <_ ( # ` s ) -> A. f e. ( R ^m ( s C M ) ) E. c e. R E. x e. ~P s ( ( F ` c ) <_ ( # ` x ) /\ ( x C M ) C_ ( `' f " { c } ) ) ) ) |