| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ramsey.c | ⊢ 𝐶  =  ( 𝑎  ∈  V ,  𝑖  ∈  ℕ0  ↦  { 𝑏  ∈  𝒫  𝑎  ∣  ( ♯ ‘ 𝑏 )  =  𝑖 } ) | 
						
							| 2 |  | ramcl | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑅  ∈  Fin  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  →  ( 𝑀  Ramsey  𝐹 )  ∈  ℕ0 ) | 
						
							| 3 |  | eqid | ⊢ { 𝑛  ∈  ℕ0  ∣  ∀ 𝑠 ( 𝑛  ≤  ( ♯ ‘ 𝑠 )  →  ∀ 𝑓  ∈  ( 𝑅  ↑m  ( 𝑠 𝐶 𝑀 ) ) ∃ 𝑐  ∈  𝑅 ∃ 𝑥  ∈  𝒫  𝑠 ( ( 𝐹 ‘ 𝑐 )  ≤  ( ♯ ‘ 𝑥 )  ∧  ( 𝑥 𝐶 𝑀 )  ⊆  ( ◡ 𝑓  “  { 𝑐 } ) ) ) }  =  { 𝑛  ∈  ℕ0  ∣  ∀ 𝑠 ( 𝑛  ≤  ( ♯ ‘ 𝑠 )  →  ∀ 𝑓  ∈  ( 𝑅  ↑m  ( 𝑠 𝐶 𝑀 ) ) ∃ 𝑐  ∈  𝑅 ∃ 𝑥  ∈  𝒫  𝑠 ( ( 𝐹 ‘ 𝑐 )  ≤  ( ♯ ‘ 𝑥 )  ∧  ( 𝑥 𝐶 𝑀 )  ⊆  ( ◡ 𝑓  “  { 𝑐 } ) ) ) } | 
						
							| 4 | 1 3 | ramtcl2 | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑅  ∈  Fin  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  →  ( ( 𝑀  Ramsey  𝐹 )  ∈  ℕ0  ↔  { 𝑛  ∈  ℕ0  ∣  ∀ 𝑠 ( 𝑛  ≤  ( ♯ ‘ 𝑠 )  →  ∀ 𝑓  ∈  ( 𝑅  ↑m  ( 𝑠 𝐶 𝑀 ) ) ∃ 𝑐  ∈  𝑅 ∃ 𝑥  ∈  𝒫  𝑠 ( ( 𝐹 ‘ 𝑐 )  ≤  ( ♯ ‘ 𝑥 )  ∧  ( 𝑥 𝐶 𝑀 )  ⊆  ( ◡ 𝑓  “  { 𝑐 } ) ) ) }  ≠  ∅ ) ) | 
						
							| 5 | 2 4 | mpbid | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑅  ∈  Fin  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  →  { 𝑛  ∈  ℕ0  ∣  ∀ 𝑠 ( 𝑛  ≤  ( ♯ ‘ 𝑠 )  →  ∀ 𝑓  ∈  ( 𝑅  ↑m  ( 𝑠 𝐶 𝑀 ) ) ∃ 𝑐  ∈  𝑅 ∃ 𝑥  ∈  𝒫  𝑠 ( ( 𝐹 ‘ 𝑐 )  ≤  ( ♯ ‘ 𝑥 )  ∧  ( 𝑥 𝐶 𝑀 )  ⊆  ( ◡ 𝑓  “  { 𝑐 } ) ) ) }  ≠  ∅ ) | 
						
							| 6 |  | rabn0 | ⊢ ( { 𝑛  ∈  ℕ0  ∣  ∀ 𝑠 ( 𝑛  ≤  ( ♯ ‘ 𝑠 )  →  ∀ 𝑓  ∈  ( 𝑅  ↑m  ( 𝑠 𝐶 𝑀 ) ) ∃ 𝑐  ∈  𝑅 ∃ 𝑥  ∈  𝒫  𝑠 ( ( 𝐹 ‘ 𝑐 )  ≤  ( ♯ ‘ 𝑥 )  ∧  ( 𝑥 𝐶 𝑀 )  ⊆  ( ◡ 𝑓  “  { 𝑐 } ) ) ) }  ≠  ∅  ↔  ∃ 𝑛  ∈  ℕ0 ∀ 𝑠 ( 𝑛  ≤  ( ♯ ‘ 𝑠 )  →  ∀ 𝑓  ∈  ( 𝑅  ↑m  ( 𝑠 𝐶 𝑀 ) ) ∃ 𝑐  ∈  𝑅 ∃ 𝑥  ∈  𝒫  𝑠 ( ( 𝐹 ‘ 𝑐 )  ≤  ( ♯ ‘ 𝑥 )  ∧  ( 𝑥 𝐶 𝑀 )  ⊆  ( ◡ 𝑓  “  { 𝑐 } ) ) ) ) | 
						
							| 7 | 5 6 | sylib | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑅  ∈  Fin  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  →  ∃ 𝑛  ∈  ℕ0 ∀ 𝑠 ( 𝑛  ≤  ( ♯ ‘ 𝑠 )  →  ∀ 𝑓  ∈  ( 𝑅  ↑m  ( 𝑠 𝐶 𝑀 ) ) ∃ 𝑐  ∈  𝑅 ∃ 𝑥  ∈  𝒫  𝑠 ( ( 𝐹 ‘ 𝑐 )  ≤  ( ♯ ‘ 𝑥 )  ∧  ( 𝑥 𝐶 𝑀 )  ⊆  ( ◡ 𝑓  “  { 𝑐 } ) ) ) ) |