Metamath Proof Explorer


Theorem ramtcl2

Description: The Ramsey number is an integer iff there is a number with the Ramsey number property. (Contributed by Mario Carneiro, 20-Apr-2015) (Revised by AV, 14-Sep-2020)

Ref Expression
Hypotheses ramval.c 𝐶 = ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } )
ramval.t 𝑇 = { 𝑛 ∈ ℕ0 ∣ ∀ 𝑠 ( 𝑛 ≤ ( ♯ ‘ 𝑠 ) → ∀ 𝑓 ∈ ( 𝑅m ( 𝑠 𝐶 𝑀 ) ) ∃ 𝑐𝑅𝑥 ∈ 𝒫 𝑠 ( ( 𝐹𝑐 ) ≤ ( ♯ ‘ 𝑥 ) ∧ ( 𝑥 𝐶 𝑀 ) ⊆ ( 𝑓 “ { 𝑐 } ) ) ) }
Assertion ramtcl2 ( ( 𝑀 ∈ ℕ0𝑅𝑉𝐹 : 𝑅 ⟶ ℕ0 ) → ( ( 𝑀 Ramsey 𝐹 ) ∈ ℕ0𝑇 ≠ ∅ ) )

Proof

Step Hyp Ref Expression
1 ramval.c 𝐶 = ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } )
2 ramval.t 𝑇 = { 𝑛 ∈ ℕ0 ∣ ∀ 𝑠 ( 𝑛 ≤ ( ♯ ‘ 𝑠 ) → ∀ 𝑓 ∈ ( 𝑅m ( 𝑠 𝐶 𝑀 ) ) ∃ 𝑐𝑅𝑥 ∈ 𝒫 𝑠 ( ( 𝐹𝑐 ) ≤ ( ♯ ‘ 𝑥 ) ∧ ( 𝑥 𝐶 𝑀 ) ⊆ ( 𝑓 “ { 𝑐 } ) ) ) }
3 1 2 ramcl2lem ( ( 𝑀 ∈ ℕ0𝑅𝑉𝐹 : 𝑅 ⟶ ℕ0 ) → ( 𝑀 Ramsey 𝐹 ) = if ( 𝑇 = ∅ , +∞ , inf ( 𝑇 , ℝ , < ) ) )
4 3 eleq1d ( ( 𝑀 ∈ ℕ0𝑅𝑉𝐹 : 𝑅 ⟶ ℕ0 ) → ( ( 𝑀 Ramsey 𝐹 ) ∈ ℕ0 ↔ if ( 𝑇 = ∅ , +∞ , inf ( 𝑇 , ℝ , < ) ) ∈ ℕ0 ) )
5 pnfnre +∞ ∉ ℝ
6 5 neli ¬ +∞ ∈ ℝ
7 iftrue ( 𝑇 = ∅ → if ( 𝑇 = ∅ , +∞ , inf ( 𝑇 , ℝ , < ) ) = +∞ )
8 7 eleq1d ( 𝑇 = ∅ → ( if ( 𝑇 = ∅ , +∞ , inf ( 𝑇 , ℝ , < ) ) ∈ ℕ0 ↔ +∞ ∈ ℕ0 ) )
9 nn0re ( +∞ ∈ ℕ0 → +∞ ∈ ℝ )
10 8 9 syl6bi ( 𝑇 = ∅ → ( if ( 𝑇 = ∅ , +∞ , inf ( 𝑇 , ℝ , < ) ) ∈ ℕ0 → +∞ ∈ ℝ ) )
11 6 10 mtoi ( 𝑇 = ∅ → ¬ if ( 𝑇 = ∅ , +∞ , inf ( 𝑇 , ℝ , < ) ) ∈ ℕ0 )
12 11 necon2ai ( if ( 𝑇 = ∅ , +∞ , inf ( 𝑇 , ℝ , < ) ) ∈ ℕ0𝑇 ≠ ∅ )
13 4 12 syl6bi ( ( 𝑀 ∈ ℕ0𝑅𝑉𝐹 : 𝑅 ⟶ ℕ0 ) → ( ( 𝑀 Ramsey 𝐹 ) ∈ ℕ0𝑇 ≠ ∅ ) )
14 1 2 ramtcl ( ( 𝑀 ∈ ℕ0𝑅𝑉𝐹 : 𝑅 ⟶ ℕ0 ) → ( ( 𝑀 Ramsey 𝐹 ) ∈ 𝑇𝑇 ≠ ∅ ) )
15 2 ssrab3 𝑇 ⊆ ℕ0
16 15 sseli ( ( 𝑀 Ramsey 𝐹 ) ∈ 𝑇 → ( 𝑀 Ramsey 𝐹 ) ∈ ℕ0 )
17 14 16 syl6bir ( ( 𝑀 ∈ ℕ0𝑅𝑉𝐹 : 𝑅 ⟶ ℕ0 ) → ( 𝑇 ≠ ∅ → ( 𝑀 Ramsey 𝐹 ) ∈ ℕ0 ) )
18 13 17 impbid ( ( 𝑀 ∈ ℕ0𝑅𝑉𝐹 : 𝑅 ⟶ ℕ0 ) → ( ( 𝑀 Ramsey 𝐹 ) ∈ ℕ0𝑇 ≠ ∅ ) )