Metamath Proof Explorer


Theorem ramtcl2

Description: The Ramsey number is an integer iff there is a number with the Ramsey number property. (Contributed by Mario Carneiro, 20-Apr-2015) (Revised by AV, 14-Sep-2020)

Ref Expression
Hypotheses ramval.c C=aV,i0b𝒫a|b=i
ramval.t T=n0|snsfRsCMcRx𝒫sFcxxCMf-1c
Assertion ramtcl2 M0RVF:R0MRamseyF0T

Proof

Step Hyp Ref Expression
1 ramval.c C=aV,i0b𝒫a|b=i
2 ramval.t T=n0|snsfRsCMcRx𝒫sFcxxCMf-1c
3 1 2 ramcl2lem M0RVF:R0MRamseyF=ifT=+∞supT<
4 3 eleq1d M0RVF:R0MRamseyF0ifT=+∞supT<0
5 pnfnre +∞
6 5 neli ¬+∞
7 iftrue T=ifT=+∞supT<=+∞
8 7 eleq1d T=ifT=+∞supT<0+∞0
9 nn0re +∞0+∞
10 8 9 syl6bi T=ifT=+∞supT<0+∞
11 6 10 mtoi T=¬ifT=+∞supT<0
12 11 necon2ai ifT=+∞supT<0T
13 4 12 syl6bi M0RVF:R0MRamseyF0T
14 1 2 ramtcl M0RVF:R0MRamseyFTT
15 2 ssrab3 T0
16 15 sseli MRamseyFTMRamseyF0
17 14 16 syl6bir M0RVF:R0TMRamseyF0
18 13 17 impbid M0RVF:R0MRamseyF0T