Metamath Proof Explorer


Theorem ramtcl

Description: The Ramsey number has the Ramsey number property if any number does. (Contributed by Mario Carneiro, 20-Apr-2015) (Revised by AV, 14-Sep-2020)

Ref Expression
Hypotheses ramval.c C=aV,i0b𝒫a|b=i
ramval.t T=n0|snsfRsCMcRx𝒫sFcxxCMf-1c
Assertion ramtcl M0RVF:R0MRamseyFTT

Proof

Step Hyp Ref Expression
1 ramval.c C=aV,i0b𝒫a|b=i
2 ramval.t T=n0|snsfRsCMcRx𝒫sFcxxCMf-1c
3 ne0i MRamseyFTT
4 1 2 ramcl2lem M0RVF:R0MRamseyF=ifT=+∞supT<
5 ifnefalse TifT=+∞supT<=supT<
6 4 5 sylan9eq M0RVF:R0TMRamseyF=supT<
7 2 ssrab3 T0
8 nn0uz 0=0
9 7 8 sseqtri T0
10 9 a1i M0RVF:R0T0
11 infssuzcl T0TsupT<T
12 10 11 sylan M0RVF:R0TsupT<T
13 6 12 eqeltrd M0RVF:R0TMRamseyFT
14 13 ex M0RVF:R0TMRamseyFT
15 3 14 impbid2 M0RVF:R0MRamseyFTT