Metamath Proof Explorer


Theorem rankval3

Description: The value of the rank function expressed recursively: the rank of a set is the smallest ordinal number containing the ranks of all members of the set. Proposition 9.17 of TakeutiZaring p. 79. (Contributed by NM, 11-Oct-2003) (Revised by Mario Carneiro, 17-Nov-2014)

Ref Expression
Hypothesis rankval3.1
|- A e. _V
Assertion rankval3
|- ( rank ` A ) = |^| { x e. On | A. y e. A ( rank ` y ) e. x }

Proof

Step Hyp Ref Expression
1 rankval3.1
 |-  A e. _V
2 unir1
 |-  U. ( R1 " On ) = _V
3 1 2 eleqtrri
 |-  A e. U. ( R1 " On )
4 rankval3b
 |-  ( A e. U. ( R1 " On ) -> ( rank ` A ) = |^| { x e. On | A. y e. A ( rank ` y ) e. x } )
5 3 4 ax-mp
 |-  ( rank ` A ) = |^| { x e. On | A. y e. A ( rank ` y ) e. x }