Description: The value of the rank function expressed recursively: the rank of a set is the smallest ordinal number containing the ranks of all members of the set. Proposition 9.17 of TakeutiZaring p. 79. (Contributed by NM, 11-Oct-2003) (Revised by Mario Carneiro, 17-Nov-2014)
Ref | Expression | ||
---|---|---|---|
Hypothesis | rankval3.1 | |- A e. _V |
|
Assertion | rankval3 | |- ( rank ` A ) = |^| { x e. On | A. y e. A ( rank ` y ) e. x } |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rankval3.1 | |- A e. _V |
|
2 | unir1 | |- U. ( R1 " On ) = _V |
|
3 | 1 2 | eleqtrri | |- A e. U. ( R1 " On ) |
4 | rankval3b | |- ( A e. U. ( R1 " On ) -> ( rank ` A ) = |^| { x e. On | A. y e. A ( rank ` y ) e. x } ) |
|
5 | 3 4 | ax-mp | |- ( rank ` A ) = |^| { x e. On | A. y e. A ( rank ` y ) e. x } |