| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rankxpl.1 |
|- A e. _V |
| 2 |
|
rankxpl.2 |
|- B e. _V |
| 3 |
|
unixp |
|- ( ( A X. B ) =/= (/) -> U. U. ( A X. B ) = ( A u. B ) ) |
| 4 |
3
|
fveq2d |
|- ( ( A X. B ) =/= (/) -> ( rank ` U. U. ( A X. B ) ) = ( rank ` ( A u. B ) ) ) |
| 5 |
1 2
|
xpex |
|- ( A X. B ) e. _V |
| 6 |
5
|
uniex |
|- U. ( A X. B ) e. _V |
| 7 |
6
|
rankuniss |
|- ( rank ` U. U. ( A X. B ) ) C_ ( rank ` U. ( A X. B ) ) |
| 8 |
5
|
rankuniss |
|- ( rank ` U. ( A X. B ) ) C_ ( rank ` ( A X. B ) ) |
| 9 |
7 8
|
sstri |
|- ( rank ` U. U. ( A X. B ) ) C_ ( rank ` ( A X. B ) ) |
| 10 |
4 9
|
eqsstrrdi |
|- ( ( A X. B ) =/= (/) -> ( rank ` ( A u. B ) ) C_ ( rank ` ( A X. B ) ) ) |