Step |
Hyp |
Ref |
Expression |
1 |
|
relxp |
|- Rel ( A X. B ) |
2 |
|
relfld |
|- ( Rel ( A X. B ) -> U. U. ( A X. B ) = ( dom ( A X. B ) u. ran ( A X. B ) ) ) |
3 |
1 2
|
ax-mp |
|- U. U. ( A X. B ) = ( dom ( A X. B ) u. ran ( A X. B ) ) |
4 |
|
xpeq2 |
|- ( B = (/) -> ( A X. B ) = ( A X. (/) ) ) |
5 |
|
xp0 |
|- ( A X. (/) ) = (/) |
6 |
4 5
|
eqtrdi |
|- ( B = (/) -> ( A X. B ) = (/) ) |
7 |
6
|
necon3i |
|- ( ( A X. B ) =/= (/) -> B =/= (/) ) |
8 |
|
xpeq1 |
|- ( A = (/) -> ( A X. B ) = ( (/) X. B ) ) |
9 |
|
0xp |
|- ( (/) X. B ) = (/) |
10 |
8 9
|
eqtrdi |
|- ( A = (/) -> ( A X. B ) = (/) ) |
11 |
10
|
necon3i |
|- ( ( A X. B ) =/= (/) -> A =/= (/) ) |
12 |
|
dmxp |
|- ( B =/= (/) -> dom ( A X. B ) = A ) |
13 |
|
rnxp |
|- ( A =/= (/) -> ran ( A X. B ) = B ) |
14 |
|
uneq12 |
|- ( ( dom ( A X. B ) = A /\ ran ( A X. B ) = B ) -> ( dom ( A X. B ) u. ran ( A X. B ) ) = ( A u. B ) ) |
15 |
12 13 14
|
syl2an |
|- ( ( B =/= (/) /\ A =/= (/) ) -> ( dom ( A X. B ) u. ran ( A X. B ) ) = ( A u. B ) ) |
16 |
7 11 15
|
syl2anc |
|- ( ( A X. B ) =/= (/) -> ( dom ( A X. B ) u. ran ( A X. B ) ) = ( A u. B ) ) |
17 |
3 16
|
eqtrid |
|- ( ( A X. B ) =/= (/) -> U. U. ( A X. B ) = ( A u. B ) ) |