| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rankxplim.1 |  |-  A e. _V | 
						
							| 2 |  | rankxplim.2 |  |-  B e. _V | 
						
							| 3 |  | 0ellim |  |-  ( Lim ( rank ` ( A X. B ) ) -> (/) e. ( rank ` ( A X. B ) ) ) | 
						
							| 4 |  | n0i |  |-  ( (/) e. ( rank ` ( A X. B ) ) -> -. ( rank ` ( A X. B ) ) = (/) ) | 
						
							| 5 | 3 4 | syl |  |-  ( Lim ( rank ` ( A X. B ) ) -> -. ( rank ` ( A X. B ) ) = (/) ) | 
						
							| 6 |  | df-ne |  |-  ( ( A X. B ) =/= (/) <-> -. ( A X. B ) = (/) ) | 
						
							| 7 | 1 2 | xpex |  |-  ( A X. B ) e. _V | 
						
							| 8 | 7 | rankeq0 |  |-  ( ( A X. B ) = (/) <-> ( rank ` ( A X. B ) ) = (/) ) | 
						
							| 9 | 8 | notbii |  |-  ( -. ( A X. B ) = (/) <-> -. ( rank ` ( A X. B ) ) = (/) ) | 
						
							| 10 | 6 9 | bitr2i |  |-  ( -. ( rank ` ( A X. B ) ) = (/) <-> ( A X. B ) =/= (/) ) | 
						
							| 11 | 5 10 | sylib |  |-  ( Lim ( rank ` ( A X. B ) ) -> ( A X. B ) =/= (/) ) | 
						
							| 12 |  | limuni2 |  |-  ( Lim ( rank ` ( A X. B ) ) -> Lim U. ( rank ` ( A X. B ) ) ) | 
						
							| 13 |  | limuni2 |  |-  ( Lim U. ( rank ` ( A X. B ) ) -> Lim U. U. ( rank ` ( A X. B ) ) ) | 
						
							| 14 | 12 13 | syl |  |-  ( Lim ( rank ` ( A X. B ) ) -> Lim U. U. ( rank ` ( A X. B ) ) ) | 
						
							| 15 |  | rankuni |  |-  ( rank ` U. U. ( A X. B ) ) = U. ( rank ` U. ( A X. B ) ) | 
						
							| 16 |  | rankuni |  |-  ( rank ` U. ( A X. B ) ) = U. ( rank ` ( A X. B ) ) | 
						
							| 17 | 16 | unieqi |  |-  U. ( rank ` U. ( A X. B ) ) = U. U. ( rank ` ( A X. B ) ) | 
						
							| 18 | 15 17 | eqtr2i |  |-  U. U. ( rank ` ( A X. B ) ) = ( rank ` U. U. ( A X. B ) ) | 
						
							| 19 |  | unixp |  |-  ( ( A X. B ) =/= (/) -> U. U. ( A X. B ) = ( A u. B ) ) | 
						
							| 20 | 19 | fveq2d |  |-  ( ( A X. B ) =/= (/) -> ( rank ` U. U. ( A X. B ) ) = ( rank ` ( A u. B ) ) ) | 
						
							| 21 | 18 20 | eqtrid |  |-  ( ( A X. B ) =/= (/) -> U. U. ( rank ` ( A X. B ) ) = ( rank ` ( A u. B ) ) ) | 
						
							| 22 |  | limeq |  |-  ( U. U. ( rank ` ( A X. B ) ) = ( rank ` ( A u. B ) ) -> ( Lim U. U. ( rank ` ( A X. B ) ) <-> Lim ( rank ` ( A u. B ) ) ) ) | 
						
							| 23 | 21 22 | syl |  |-  ( ( A X. B ) =/= (/) -> ( Lim U. U. ( rank ` ( A X. B ) ) <-> Lim ( rank ` ( A u. B ) ) ) ) | 
						
							| 24 | 14 23 | imbitrid |  |-  ( ( A X. B ) =/= (/) -> ( Lim ( rank ` ( A X. B ) ) -> Lim ( rank ` ( A u. B ) ) ) ) | 
						
							| 25 | 11 24 | mpcom |  |-  ( Lim ( rank ` ( A X. B ) ) -> Lim ( rank ` ( A u. B ) ) ) |