| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rankxplim.1 |
⊢ 𝐴 ∈ V |
| 2 |
|
rankxplim.2 |
⊢ 𝐵 ∈ V |
| 3 |
|
0ellim |
⊢ ( Lim ( rank ‘ ( 𝐴 × 𝐵 ) ) → ∅ ∈ ( rank ‘ ( 𝐴 × 𝐵 ) ) ) |
| 4 |
|
n0i |
⊢ ( ∅ ∈ ( rank ‘ ( 𝐴 × 𝐵 ) ) → ¬ ( rank ‘ ( 𝐴 × 𝐵 ) ) = ∅ ) |
| 5 |
3 4
|
syl |
⊢ ( Lim ( rank ‘ ( 𝐴 × 𝐵 ) ) → ¬ ( rank ‘ ( 𝐴 × 𝐵 ) ) = ∅ ) |
| 6 |
|
df-ne |
⊢ ( ( 𝐴 × 𝐵 ) ≠ ∅ ↔ ¬ ( 𝐴 × 𝐵 ) = ∅ ) |
| 7 |
1 2
|
xpex |
⊢ ( 𝐴 × 𝐵 ) ∈ V |
| 8 |
7
|
rankeq0 |
⊢ ( ( 𝐴 × 𝐵 ) = ∅ ↔ ( rank ‘ ( 𝐴 × 𝐵 ) ) = ∅ ) |
| 9 |
8
|
notbii |
⊢ ( ¬ ( 𝐴 × 𝐵 ) = ∅ ↔ ¬ ( rank ‘ ( 𝐴 × 𝐵 ) ) = ∅ ) |
| 10 |
6 9
|
bitr2i |
⊢ ( ¬ ( rank ‘ ( 𝐴 × 𝐵 ) ) = ∅ ↔ ( 𝐴 × 𝐵 ) ≠ ∅ ) |
| 11 |
5 10
|
sylib |
⊢ ( Lim ( rank ‘ ( 𝐴 × 𝐵 ) ) → ( 𝐴 × 𝐵 ) ≠ ∅ ) |
| 12 |
|
limuni2 |
⊢ ( Lim ( rank ‘ ( 𝐴 × 𝐵 ) ) → Lim ∪ ( rank ‘ ( 𝐴 × 𝐵 ) ) ) |
| 13 |
|
limuni2 |
⊢ ( Lim ∪ ( rank ‘ ( 𝐴 × 𝐵 ) ) → Lim ∪ ∪ ( rank ‘ ( 𝐴 × 𝐵 ) ) ) |
| 14 |
12 13
|
syl |
⊢ ( Lim ( rank ‘ ( 𝐴 × 𝐵 ) ) → Lim ∪ ∪ ( rank ‘ ( 𝐴 × 𝐵 ) ) ) |
| 15 |
|
rankuni |
⊢ ( rank ‘ ∪ ∪ ( 𝐴 × 𝐵 ) ) = ∪ ( rank ‘ ∪ ( 𝐴 × 𝐵 ) ) |
| 16 |
|
rankuni |
⊢ ( rank ‘ ∪ ( 𝐴 × 𝐵 ) ) = ∪ ( rank ‘ ( 𝐴 × 𝐵 ) ) |
| 17 |
16
|
unieqi |
⊢ ∪ ( rank ‘ ∪ ( 𝐴 × 𝐵 ) ) = ∪ ∪ ( rank ‘ ( 𝐴 × 𝐵 ) ) |
| 18 |
15 17
|
eqtr2i |
⊢ ∪ ∪ ( rank ‘ ( 𝐴 × 𝐵 ) ) = ( rank ‘ ∪ ∪ ( 𝐴 × 𝐵 ) ) |
| 19 |
|
unixp |
⊢ ( ( 𝐴 × 𝐵 ) ≠ ∅ → ∪ ∪ ( 𝐴 × 𝐵 ) = ( 𝐴 ∪ 𝐵 ) ) |
| 20 |
19
|
fveq2d |
⊢ ( ( 𝐴 × 𝐵 ) ≠ ∅ → ( rank ‘ ∪ ∪ ( 𝐴 × 𝐵 ) ) = ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ) |
| 21 |
18 20
|
eqtrid |
⊢ ( ( 𝐴 × 𝐵 ) ≠ ∅ → ∪ ∪ ( rank ‘ ( 𝐴 × 𝐵 ) ) = ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ) |
| 22 |
|
limeq |
⊢ ( ∪ ∪ ( rank ‘ ( 𝐴 × 𝐵 ) ) = ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) → ( Lim ∪ ∪ ( rank ‘ ( 𝐴 × 𝐵 ) ) ↔ Lim ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ) ) |
| 23 |
21 22
|
syl |
⊢ ( ( 𝐴 × 𝐵 ) ≠ ∅ → ( Lim ∪ ∪ ( rank ‘ ( 𝐴 × 𝐵 ) ) ↔ Lim ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ) ) |
| 24 |
14 23
|
imbitrid |
⊢ ( ( 𝐴 × 𝐵 ) ≠ ∅ → ( Lim ( rank ‘ ( 𝐴 × 𝐵 ) ) → Lim ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ) ) |
| 25 |
11 24
|
mpcom |
⊢ ( Lim ( rank ‘ ( 𝐴 × 𝐵 ) ) → Lim ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ) |