Description: The first of four axioms in the Russell-Bernays axiom system. (Contributed by Anthony Hart, 13-Aug-2011) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | rb-ax1 | |- ( -. ( -. ps \/ ch ) \/ ( -. ( ph \/ ps ) \/ ( ph \/ ch ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orim2 | |- ( ( ps -> ch ) -> ( ( ph \/ ps ) -> ( ph \/ ch ) ) ) |
|
2 | imor | |- ( ( ps -> ch ) <-> ( -. ps \/ ch ) ) |
|
3 | imor | |- ( ( ( ph \/ ps ) -> ( ph \/ ch ) ) <-> ( -. ( ph \/ ps ) \/ ( ph \/ ch ) ) ) |
|
4 | 1 2 3 | 3imtr3i | |- ( ( -. ps \/ ch ) -> ( -. ( ph \/ ps ) \/ ( ph \/ ch ) ) ) |
5 | 4 | imori | |- ( -. ( -. ps \/ ch ) \/ ( -. ( ph \/ ps ) \/ ( ph \/ ch ) ) ) |