Metamath Proof Explorer


Theorem rb-ax1

Description: The first of four axioms in the Russell-Bernays axiom system. (Contributed by Anthony Hart, 13-Aug-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion rb-ax1
|- ( -. ( -. ps \/ ch ) \/ ( -. ( ph \/ ps ) \/ ( ph \/ ch ) ) )

Proof

Step Hyp Ref Expression
1 orim2
 |-  ( ( ps -> ch ) -> ( ( ph \/ ps ) -> ( ph \/ ch ) ) )
2 imor
 |-  ( ( ps -> ch ) <-> ( -. ps \/ ch ) )
3 imor
 |-  ( ( ( ph \/ ps ) -> ( ph \/ ch ) ) <-> ( -. ( ph \/ ps ) \/ ( ph \/ ch ) ) )
4 1 2 3 3imtr3i
 |-  ( ( -. ps \/ ch ) -> ( -. ( ph \/ ps ) \/ ( ph \/ ch ) ) )
5 4 imori
 |-  ( -. ( -. ps \/ ch ) \/ ( -. ( ph \/ ps ) \/ ( ph \/ ch ) ) )