Description: The first of four axioms in the Russell-Bernays axiom system. (Contributed by Anthony Hart, 13-Aug-2011) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rb-ax1 | ⊢ ( ¬ ( ¬ 𝜓 ∨ 𝜒 ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∨ ( 𝜑 ∨ 𝜒 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orim2 | ⊢ ( ( 𝜓 → 𝜒 ) → ( ( 𝜑 ∨ 𝜓 ) → ( 𝜑 ∨ 𝜒 ) ) ) | |
| 2 | imor | ⊢ ( ( 𝜓 → 𝜒 ) ↔ ( ¬ 𝜓 ∨ 𝜒 ) ) | |
| 3 | imor | ⊢ ( ( ( 𝜑 ∨ 𝜓 ) → ( 𝜑 ∨ 𝜒 ) ) ↔ ( ¬ ( 𝜑 ∨ 𝜓 ) ∨ ( 𝜑 ∨ 𝜒 ) ) ) | |
| 4 | 1 2 3 | 3imtr3i | ⊢ ( ( ¬ 𝜓 ∨ 𝜒 ) → ( ¬ ( 𝜑 ∨ 𝜓 ) ∨ ( 𝜑 ∨ 𝜒 ) ) ) |
| 5 | 4 | imori | ⊢ ( ¬ ( ¬ 𝜓 ∨ 𝜒 ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∨ ( 𝜑 ∨ 𝜒 ) ) ) |