Metamath Proof Explorer


Theorem rb-ax1

Description: The first of four axioms in the Russell-Bernays axiom system. (Contributed by Anthony Hart, 13-Aug-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion rb-ax1 ( ¬ ( ¬ 𝜓𝜒 ) ∨ ( ¬ ( 𝜑𝜓 ) ∨ ( 𝜑𝜒 ) ) )

Proof

Step Hyp Ref Expression
1 orim2 ( ( 𝜓𝜒 ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜒 ) ) )
2 imor ( ( 𝜓𝜒 ) ↔ ( ¬ 𝜓𝜒 ) )
3 imor ( ( ( 𝜑𝜓 ) → ( 𝜑𝜒 ) ) ↔ ( ¬ ( 𝜑𝜓 ) ∨ ( 𝜑𝜒 ) ) )
4 1 2 3 3imtr3i ( ( ¬ 𝜓𝜒 ) → ( ¬ ( 𝜑𝜓 ) ∨ ( 𝜑𝜒 ) ) )
5 4 imori ( ¬ ( ¬ 𝜓𝜒 ) ∨ ( ¬ ( 𝜑𝜓 ) ∨ ( 𝜑𝜒 ) ) )