Step |
Hyp |
Ref |
Expression |
1 |
|
readdid1addid2d.a |
|- ( ph -> A e. RR ) |
2 |
|
readdid1addid2d.b |
|- ( ph -> B e. RR ) |
3 |
|
readdid1addid2d.1 |
|- ( ph -> ( B + A ) = B ) |
4 |
2
|
adantr |
|- ( ( ph /\ C e. RR ) -> B e. RR ) |
5 |
4
|
recnd |
|- ( ( ph /\ C e. RR ) -> B e. CC ) |
6 |
1
|
adantr |
|- ( ( ph /\ C e. RR ) -> A e. RR ) |
7 |
6
|
recnd |
|- ( ( ph /\ C e. RR ) -> A e. CC ) |
8 |
|
simpr |
|- ( ( ph /\ C e. RR ) -> C e. RR ) |
9 |
8
|
recnd |
|- ( ( ph /\ C e. RR ) -> C e. CC ) |
10 |
5 7 9
|
addassd |
|- ( ( ph /\ C e. RR ) -> ( ( B + A ) + C ) = ( B + ( A + C ) ) ) |
11 |
3
|
adantr |
|- ( ( ph /\ C e. RR ) -> ( B + A ) = B ) |
12 |
11
|
oveq1d |
|- ( ( ph /\ C e. RR ) -> ( ( B + A ) + C ) = ( B + C ) ) |
13 |
10 12
|
eqtr3d |
|- ( ( ph /\ C e. RR ) -> ( B + ( A + C ) ) = ( B + C ) ) |
14 |
6 8
|
readdcld |
|- ( ( ph /\ C e. RR ) -> ( A + C ) e. RR ) |
15 |
|
readdcan |
|- ( ( ( A + C ) e. RR /\ C e. RR /\ B e. RR ) -> ( ( B + ( A + C ) ) = ( B + C ) <-> ( A + C ) = C ) ) |
16 |
14 8 4 15
|
syl3anc |
|- ( ( ph /\ C e. RR ) -> ( ( B + ( A + C ) ) = ( B + C ) <-> ( A + C ) = C ) ) |
17 |
13 16
|
mpbid |
|- ( ( ph /\ C e. RR ) -> ( A + C ) = C ) |