Metamath Proof Explorer


Theorem readdid1addid2d

Description: Given some real number B where A acts like a right additive identity, derive that A is a left additive identity. Note that the hypothesis is weaker than proving that A is a right additive identity (for all numbers). Although, if there is a right additive identity, then by readdcan , A is the right additive identity. (Contributed by Steven Nguyen, 14-Jan-2023)

Ref Expression
Hypotheses readdid1addid2d.a
|- ( ph -> A e. RR )
readdid1addid2d.b
|- ( ph -> B e. RR )
readdid1addid2d.1
|- ( ph -> ( B + A ) = B )
Assertion readdid1addid2d
|- ( ( ph /\ C e. RR ) -> ( A + C ) = C )

Proof

Step Hyp Ref Expression
1 readdid1addid2d.a
 |-  ( ph -> A e. RR )
2 readdid1addid2d.b
 |-  ( ph -> B e. RR )
3 readdid1addid2d.1
 |-  ( ph -> ( B + A ) = B )
4 2 adantr
 |-  ( ( ph /\ C e. RR ) -> B e. RR )
5 4 recnd
 |-  ( ( ph /\ C e. RR ) -> B e. CC )
6 1 adantr
 |-  ( ( ph /\ C e. RR ) -> A e. RR )
7 6 recnd
 |-  ( ( ph /\ C e. RR ) -> A e. CC )
8 simpr
 |-  ( ( ph /\ C e. RR ) -> C e. RR )
9 8 recnd
 |-  ( ( ph /\ C e. RR ) -> C e. CC )
10 5 7 9 addassd
 |-  ( ( ph /\ C e. RR ) -> ( ( B + A ) + C ) = ( B + ( A + C ) ) )
11 3 adantr
 |-  ( ( ph /\ C e. RR ) -> ( B + A ) = B )
12 11 oveq1d
 |-  ( ( ph /\ C e. RR ) -> ( ( B + A ) + C ) = ( B + C ) )
13 10 12 eqtr3d
 |-  ( ( ph /\ C e. RR ) -> ( B + ( A + C ) ) = ( B + C ) )
14 6 8 readdcld
 |-  ( ( ph /\ C e. RR ) -> ( A + C ) e. RR )
15 readdcan
 |-  ( ( ( A + C ) e. RR /\ C e. RR /\ B e. RR ) -> ( ( B + ( A + C ) ) = ( B + C ) <-> ( A + C ) = C ) )
16 14 8 4 15 syl3anc
 |-  ( ( ph /\ C e. RR ) -> ( ( B + ( A + C ) ) = ( B + C ) <-> ( A + C ) = C ) )
17 13 16 mpbid
 |-  ( ( ph /\ C e. RR ) -> ( A + C ) = C )