| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							recid2 | 
							 |-  ( ( A e. CC /\ A =/= 0 ) -> ( ( 1 / A ) x. A ) = 1 )  | 
						
						
							| 2 | 
							
								
							 | 
							1cnd | 
							 |-  ( ( A e. CC /\ A =/= 0 ) -> 1 e. CC )  | 
						
						
							| 3 | 
							
								
							 | 
							simpl | 
							 |-  ( ( A e. CC /\ A =/= 0 ) -> A e. CC )  | 
						
						
							| 4 | 
							
								
							 | 
							reccl | 
							 |-  ( ( A e. CC /\ A =/= 0 ) -> ( 1 / A ) e. CC )  | 
						
						
							| 5 | 
							
								
							 | 
							recne0 | 
							 |-  ( ( A e. CC /\ A =/= 0 ) -> ( 1 / A ) =/= 0 )  | 
						
						
							| 6 | 
							
								
							 | 
							divmul | 
							 |-  ( ( 1 e. CC /\ A e. CC /\ ( ( 1 / A ) e. CC /\ ( 1 / A ) =/= 0 ) ) -> ( ( 1 / ( 1 / A ) ) = A <-> ( ( 1 / A ) x. A ) = 1 ) )  | 
						
						
							| 7 | 
							
								2 3 4 5 6
							 | 
							syl112anc | 
							 |-  ( ( A e. CC /\ A =/= 0 ) -> ( ( 1 / ( 1 / A ) ) = A <-> ( ( 1 / A ) x. A ) = 1 ) )  | 
						
						
							| 8 | 
							
								1 7
							 | 
							mpbird | 
							 |-  ( ( A e. CC /\ A =/= 0 ) -> ( 1 / ( 1 / A ) ) = A )  |