| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							recid2 | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  →  ( ( 1  /  𝐴 )  ·  𝐴 )  =  1 )  | 
						
						
							| 2 | 
							
								
							 | 
							1cnd | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  →  1  ∈  ℂ )  | 
						
						
							| 3 | 
							
								
							 | 
							simpl | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  →  𝐴  ∈  ℂ )  | 
						
						
							| 4 | 
							
								
							 | 
							reccl | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  →  ( 1  /  𝐴 )  ∈  ℂ )  | 
						
						
							| 5 | 
							
								
							 | 
							recne0 | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  →  ( 1  /  𝐴 )  ≠  0 )  | 
						
						
							| 6 | 
							
								
							 | 
							divmul | 
							⊢ ( ( 1  ∈  ℂ  ∧  𝐴  ∈  ℂ  ∧  ( ( 1  /  𝐴 )  ∈  ℂ  ∧  ( 1  /  𝐴 )  ≠  0 ) )  →  ( ( 1  /  ( 1  /  𝐴 ) )  =  𝐴  ↔  ( ( 1  /  𝐴 )  ·  𝐴 )  =  1 ) )  | 
						
						
							| 7 | 
							
								2 3 4 5 6
							 | 
							syl112anc | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  →  ( ( 1  /  ( 1  /  𝐴 ) )  =  𝐴  ↔  ( ( 1  /  𝐴 )  ·  𝐴 )  =  1 ) )  | 
						
						
							| 8 | 
							
								1 7
							 | 
							mpbird | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  →  ( 1  /  ( 1  /  𝐴 ) )  =  𝐴 )  |