Step |
Hyp |
Ref |
Expression |
1 |
|
1cnd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → 1 ∈ ℂ ) |
2 |
|
reccl |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 1 / 𝐵 ) ∈ ℂ ) |
3 |
2
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( 1 / 𝐵 ) ∈ ℂ ) |
4 |
|
simpl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ) |
5 |
|
divmul |
⊢ ( ( 1 ∈ ℂ ∧ ( 1 / 𝐵 ) ∈ ℂ ∧ ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ) → ( ( 1 / 𝐴 ) = ( 1 / 𝐵 ) ↔ ( 𝐴 · ( 1 / 𝐵 ) ) = 1 ) ) |
6 |
1 3 4 5
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( ( 1 / 𝐴 ) = ( 1 / 𝐵 ) ↔ ( 𝐴 · ( 1 / 𝐵 ) ) = 1 ) ) |
7 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → 𝐴 ∈ ℂ ) |
8 |
|
simprl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → 𝐵 ∈ ℂ ) |
9 |
|
simprr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → 𝐵 ≠ 0 ) |
10 |
|
divrec |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 𝐴 / 𝐵 ) = ( 𝐴 · ( 1 / 𝐵 ) ) ) |
11 |
7 8 9 10
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( 𝐴 / 𝐵 ) = ( 𝐴 · ( 1 / 𝐵 ) ) ) |
12 |
11
|
eqeq1d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( ( 𝐴 / 𝐵 ) = 1 ↔ ( 𝐴 · ( 1 / 𝐵 ) ) = 1 ) ) |
13 |
|
diveq1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( ( 𝐴 / 𝐵 ) = 1 ↔ 𝐴 = 𝐵 ) ) |
14 |
7 8 9 13
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( ( 𝐴 / 𝐵 ) = 1 ↔ 𝐴 = 𝐵 ) ) |
15 |
6 12 14
|
3bitr2d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( ( 1 / 𝐴 ) = ( 1 / 𝐵 ) ↔ 𝐴 = 𝐵 ) ) |