| Step |
Hyp |
Ref |
Expression |
| 1 |
|
recxpf1.1 |
|- ( ph -> A e. RR ) |
| 2 |
|
recxpf1.2 |
|- ( ph -> 0 <_ A ) |
| 3 |
|
recxpf1.3 |
|- ( ph -> B e. RR ) |
| 4 |
|
recxpf1.4 |
|- ( ph -> 0 <_ B ) |
| 5 |
|
recxpf1.5 |
|- ( ph -> C e. RR+ ) |
| 6 |
1 2 3 4 5
|
cxple2d |
|- ( ph -> ( A <_ B <-> ( A ^c C ) <_ ( B ^c C ) ) ) |
| 7 |
3 4 1 2 5
|
cxple2d |
|- ( ph -> ( B <_ A <-> ( B ^c C ) <_ ( A ^c C ) ) ) |
| 8 |
6 7
|
anbi12d |
|- ( ph -> ( ( A <_ B /\ B <_ A ) <-> ( ( A ^c C ) <_ ( B ^c C ) /\ ( B ^c C ) <_ ( A ^c C ) ) ) ) |
| 9 |
1 3
|
letri3d |
|- ( ph -> ( A = B <-> ( A <_ B /\ B <_ A ) ) ) |
| 10 |
5
|
rpred |
|- ( ph -> C e. RR ) |
| 11 |
1 2 10
|
recxpcld |
|- ( ph -> ( A ^c C ) e. RR ) |
| 12 |
3 4 10
|
recxpcld |
|- ( ph -> ( B ^c C ) e. RR ) |
| 13 |
11 12
|
letri3d |
|- ( ph -> ( ( A ^c C ) = ( B ^c C ) <-> ( ( A ^c C ) <_ ( B ^c C ) /\ ( B ^c C ) <_ ( A ^c C ) ) ) ) |
| 14 |
8 9 13
|
3bitr4d |
|- ( ph -> ( A = B <-> ( A ^c C ) = ( B ^c C ) ) ) |