| Step |
Hyp |
Ref |
Expression |
| 1 |
|
recxpf1.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 2 |
|
recxpf1.2 |
⊢ ( 𝜑 → 0 ≤ 𝐴 ) |
| 3 |
|
recxpf1.3 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 4 |
|
recxpf1.4 |
⊢ ( 𝜑 → 0 ≤ 𝐵 ) |
| 5 |
|
recxpf1.5 |
⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) |
| 6 |
1 2 3 4 5
|
cxple2d |
⊢ ( 𝜑 → ( 𝐴 ≤ 𝐵 ↔ ( 𝐴 ↑𝑐 𝐶 ) ≤ ( 𝐵 ↑𝑐 𝐶 ) ) ) |
| 7 |
3 4 1 2 5
|
cxple2d |
⊢ ( 𝜑 → ( 𝐵 ≤ 𝐴 ↔ ( 𝐵 ↑𝑐 𝐶 ) ≤ ( 𝐴 ↑𝑐 𝐶 ) ) ) |
| 8 |
6 7
|
anbi12d |
⊢ ( 𝜑 → ( ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴 ) ↔ ( ( 𝐴 ↑𝑐 𝐶 ) ≤ ( 𝐵 ↑𝑐 𝐶 ) ∧ ( 𝐵 ↑𝑐 𝐶 ) ≤ ( 𝐴 ↑𝑐 𝐶 ) ) ) ) |
| 9 |
1 3
|
letri3d |
⊢ ( 𝜑 → ( 𝐴 = 𝐵 ↔ ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴 ) ) ) |
| 10 |
5
|
rpred |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
| 11 |
1 2 10
|
recxpcld |
⊢ ( 𝜑 → ( 𝐴 ↑𝑐 𝐶 ) ∈ ℝ ) |
| 12 |
3 4 10
|
recxpcld |
⊢ ( 𝜑 → ( 𝐵 ↑𝑐 𝐶 ) ∈ ℝ ) |
| 13 |
11 12
|
letri3d |
⊢ ( 𝜑 → ( ( 𝐴 ↑𝑐 𝐶 ) = ( 𝐵 ↑𝑐 𝐶 ) ↔ ( ( 𝐴 ↑𝑐 𝐶 ) ≤ ( 𝐵 ↑𝑐 𝐶 ) ∧ ( 𝐵 ↑𝑐 𝐶 ) ≤ ( 𝐴 ↑𝑐 𝐶 ) ) ) ) |
| 14 |
8 9 13
|
3bitr4d |
⊢ ( 𝜑 → ( 𝐴 = 𝐵 ↔ ( 𝐴 ↑𝑐 𝐶 ) = ( 𝐵 ↑𝑐 𝐶 ) ) ) |