| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2cnne0 |
|- ( 2 e. CC /\ 2 =/= 0 ) |
| 2 |
|
0cxp |
|- ( ( 2 e. CC /\ 2 =/= 0 ) -> ( 0 ^c 2 ) = 0 ) |
| 3 |
1 2
|
ax-mp |
|- ( 0 ^c 2 ) = 0 |
| 4 |
|
fveq2 |
|- ( A = 0 -> ( sqrt ` A ) = ( sqrt ` 0 ) ) |
| 5 |
|
sqrt0 |
|- ( sqrt ` 0 ) = 0 |
| 6 |
4 5
|
eqtrdi |
|- ( A = 0 -> ( sqrt ` A ) = 0 ) |
| 7 |
6
|
oveq1d |
|- ( A = 0 -> ( ( sqrt ` A ) ^c 2 ) = ( 0 ^c 2 ) ) |
| 8 |
|
id |
|- ( A = 0 -> A = 0 ) |
| 9 |
3 7 8
|
3eqtr4a |
|- ( A = 0 -> ( ( sqrt ` A ) ^c 2 ) = A ) |
| 10 |
9
|
a1d |
|- ( A = 0 -> ( A e. CC -> ( ( sqrt ` A ) ^c 2 ) = A ) ) |
| 11 |
|
sqrtcl |
|- ( A e. CC -> ( sqrt ` A ) e. CC ) |
| 12 |
11
|
adantr |
|- ( ( A e. CC /\ A =/= 0 ) -> ( sqrt ` A ) e. CC ) |
| 13 |
|
simpl |
|- ( ( A e. CC /\ ( sqrt ` A ) = 0 ) -> A e. CC ) |
| 14 |
|
simpr |
|- ( ( A e. CC /\ ( sqrt ` A ) = 0 ) -> ( sqrt ` A ) = 0 ) |
| 15 |
13 14
|
sqr00d |
|- ( ( A e. CC /\ ( sqrt ` A ) = 0 ) -> A = 0 ) |
| 16 |
15
|
ex |
|- ( A e. CC -> ( ( sqrt ` A ) = 0 -> A = 0 ) ) |
| 17 |
16
|
necon3d |
|- ( A e. CC -> ( A =/= 0 -> ( sqrt ` A ) =/= 0 ) ) |
| 18 |
17
|
imp |
|- ( ( A e. CC /\ A =/= 0 ) -> ( sqrt ` A ) =/= 0 ) |
| 19 |
|
2z |
|- 2 e. ZZ |
| 20 |
19
|
a1i |
|- ( ( A e. CC /\ A =/= 0 ) -> 2 e. ZZ ) |
| 21 |
12 18 20
|
cxpexpzd |
|- ( ( A e. CC /\ A =/= 0 ) -> ( ( sqrt ` A ) ^c 2 ) = ( ( sqrt ` A ) ^ 2 ) ) |
| 22 |
|
sqrtth |
|- ( A e. CC -> ( ( sqrt ` A ) ^ 2 ) = A ) |
| 23 |
22
|
adantr |
|- ( ( A e. CC /\ A =/= 0 ) -> ( ( sqrt ` A ) ^ 2 ) = A ) |
| 24 |
21 23
|
eqtrd |
|- ( ( A e. CC /\ A =/= 0 ) -> ( ( sqrt ` A ) ^c 2 ) = A ) |
| 25 |
24
|
expcom |
|- ( A =/= 0 -> ( A e. CC -> ( ( sqrt ` A ) ^c 2 ) = A ) ) |
| 26 |
10 25
|
pm2.61ine |
|- ( A e. CC -> ( ( sqrt ` A ) ^c 2 ) = A ) |