Description: Distributive law for restriction over difference. (Contributed by BTernaryTau, 15-Aug-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | resdifdir | |- ( ( A \ B ) |` C ) = ( ( A |` C ) \ ( B |` C ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | indifdir | |- ( ( A \ B ) i^i ( C X. _V ) ) = ( ( A i^i ( C X. _V ) ) \ ( B i^i ( C X. _V ) ) ) |
|
2 | df-res | |- ( ( A \ B ) |` C ) = ( ( A \ B ) i^i ( C X. _V ) ) |
|
3 | df-res | |- ( A |` C ) = ( A i^i ( C X. _V ) ) |
|
4 | df-res | |- ( B |` C ) = ( B i^i ( C X. _V ) ) |
|
5 | 3 4 | difeq12i | |- ( ( A |` C ) \ ( B |` C ) ) = ( ( A i^i ( C X. _V ) ) \ ( B i^i ( C X. _V ) ) ) |
6 | 1 2 5 | 3eqtr4i | |- ( ( A \ B ) |` C ) = ( ( A |` C ) \ ( B |` C ) ) |