Metamath Proof Explorer


Theorem resfsupp

Description: If the restriction of a function by a set which, subtracted from the domain of the function so that its difference is finitely supported, the function itself is finitely supported. (Contributed by AV, 27-May-2019)

Ref Expression
Hypotheses resfsupp.b
|- ( ph -> ( dom F \ B ) e. Fin )
resfsupp.e
|- ( ph -> F e. W )
resfsupp.f
|- ( ph -> Fun F )
resfsupp.g
|- ( ph -> G = ( F |` B ) )
resfsupp.s
|- ( ph -> G finSupp Z )
resfsupp.z
|- ( ph -> Z e. V )
Assertion resfsupp
|- ( ph -> F finSupp Z )

Proof

Step Hyp Ref Expression
1 resfsupp.b
 |-  ( ph -> ( dom F \ B ) e. Fin )
2 resfsupp.e
 |-  ( ph -> F e. W )
3 resfsupp.f
 |-  ( ph -> Fun F )
4 resfsupp.g
 |-  ( ph -> G = ( F |` B ) )
5 resfsupp.s
 |-  ( ph -> G finSupp Z )
6 resfsupp.z
 |-  ( ph -> Z e. V )
7 5 fsuppimpd
 |-  ( ph -> ( G supp Z ) e. Fin )
8 1 2 4 7 6 ressuppfi
 |-  ( ph -> ( F supp Z ) e. Fin )
9 funisfsupp
 |-  ( ( Fun F /\ F e. W /\ Z e. V ) -> ( F finSupp Z <-> ( F supp Z ) e. Fin ) )
10 3 2 6 9 syl3anc
 |-  ( ph -> ( F finSupp Z <-> ( F supp Z ) e. Fin ) )
11 8 10 mpbird
 |-  ( ph -> F finSupp Z )