Description: If the restriction of a function by a set which, subtracted from the domain of the function so that its difference is finitely supported, the function itself is finitely supported. (Contributed by AV, 27-May-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | resfsupp.b | |- ( ph -> ( dom F \ B ) e. Fin ) |
|
resfsupp.e | |- ( ph -> F e. W ) |
||
resfsupp.f | |- ( ph -> Fun F ) |
||
resfsupp.g | |- ( ph -> G = ( F |` B ) ) |
||
resfsupp.s | |- ( ph -> G finSupp Z ) |
||
resfsupp.z | |- ( ph -> Z e. V ) |
||
Assertion | resfsupp | |- ( ph -> F finSupp Z ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resfsupp.b | |- ( ph -> ( dom F \ B ) e. Fin ) |
|
2 | resfsupp.e | |- ( ph -> F e. W ) |
|
3 | resfsupp.f | |- ( ph -> Fun F ) |
|
4 | resfsupp.g | |- ( ph -> G = ( F |` B ) ) |
|
5 | resfsupp.s | |- ( ph -> G finSupp Z ) |
|
6 | resfsupp.z | |- ( ph -> Z e. V ) |
|
7 | 5 | fsuppimpd | |- ( ph -> ( G supp Z ) e. Fin ) |
8 | 1 2 4 7 6 | ressuppfi | |- ( ph -> ( F supp Z ) e. Fin ) |
9 | funisfsupp | |- ( ( Fun F /\ F e. W /\ Z e. V ) -> ( F finSupp Z <-> ( F supp Z ) e. Fin ) ) |
|
10 | 3 2 6 9 | syl3anc | |- ( ph -> ( F finSupp Z <-> ( F supp Z ) e. Fin ) ) |
11 | 8 10 | mpbird | |- ( ph -> F finSupp Z ) |