| Step | Hyp | Ref | Expression | 
						
							| 1 |  | resgrpplusfrn.b |  |-  B = ( Base ` G ) | 
						
							| 2 |  | resgrpplusfrn.h |  |-  H = ( G |`s S ) | 
						
							| 3 |  | resgrpplusfrn.o |  |-  F = ( +f ` H ) | 
						
							| 4 |  | eqid |  |-  ( Base ` H ) = ( Base ` H ) | 
						
							| 5 | 4 3 | grpplusfo |  |-  ( H e. Grp -> F : ( ( Base ` H ) X. ( Base ` H ) ) -onto-> ( Base ` H ) ) | 
						
							| 6 | 5 | adantr |  |-  ( ( H e. Grp /\ S C_ B ) -> F : ( ( Base ` H ) X. ( Base ` H ) ) -onto-> ( Base ` H ) ) | 
						
							| 7 |  | eqidd |  |-  ( ( H e. Grp /\ S C_ B ) -> F = F ) | 
						
							| 8 | 2 1 | ressbas2 |  |-  ( S C_ B -> S = ( Base ` H ) ) | 
						
							| 9 | 8 | adantl |  |-  ( ( H e. Grp /\ S C_ B ) -> S = ( Base ` H ) ) | 
						
							| 10 | 9 | sqxpeqd |  |-  ( ( H e. Grp /\ S C_ B ) -> ( S X. S ) = ( ( Base ` H ) X. ( Base ` H ) ) ) | 
						
							| 11 | 7 10 9 | foeq123d |  |-  ( ( H e. Grp /\ S C_ B ) -> ( F : ( S X. S ) -onto-> S <-> F : ( ( Base ` H ) X. ( Base ` H ) ) -onto-> ( Base ` H ) ) ) | 
						
							| 12 | 6 11 | mpbird |  |-  ( ( H e. Grp /\ S C_ B ) -> F : ( S X. S ) -onto-> S ) | 
						
							| 13 |  | forn |  |-  ( F : ( S X. S ) -onto-> S -> ran F = S ) | 
						
							| 14 | 13 | eqcomd |  |-  ( F : ( S X. S ) -onto-> S -> S = ran F ) | 
						
							| 15 | 12 14 | syl |  |-  ( ( H e. Grp /\ S C_ B ) -> S = ran F ) |