| Step | Hyp | Ref | Expression | 
						
							| 1 |  | resgrpplusfrn.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | resgrpplusfrn.h | ⊢ 𝐻  =  ( 𝐺  ↾s  𝑆 ) | 
						
							| 3 |  | resgrpplusfrn.o | ⊢ 𝐹  =  ( +𝑓 ‘ 𝐻 ) | 
						
							| 4 |  | eqid | ⊢ ( Base ‘ 𝐻 )  =  ( Base ‘ 𝐻 ) | 
						
							| 5 | 4 3 | grpplusfo | ⊢ ( 𝐻  ∈  Grp  →  𝐹 : ( ( Base ‘ 𝐻 )  ×  ( Base ‘ 𝐻 ) ) –onto→ ( Base ‘ 𝐻 ) ) | 
						
							| 6 | 5 | adantr | ⊢ ( ( 𝐻  ∈  Grp  ∧  𝑆  ⊆  𝐵 )  →  𝐹 : ( ( Base ‘ 𝐻 )  ×  ( Base ‘ 𝐻 ) ) –onto→ ( Base ‘ 𝐻 ) ) | 
						
							| 7 |  | eqidd | ⊢ ( ( 𝐻  ∈  Grp  ∧  𝑆  ⊆  𝐵 )  →  𝐹  =  𝐹 ) | 
						
							| 8 | 2 1 | ressbas2 | ⊢ ( 𝑆  ⊆  𝐵  →  𝑆  =  ( Base ‘ 𝐻 ) ) | 
						
							| 9 | 8 | adantl | ⊢ ( ( 𝐻  ∈  Grp  ∧  𝑆  ⊆  𝐵 )  →  𝑆  =  ( Base ‘ 𝐻 ) ) | 
						
							| 10 | 9 | sqxpeqd | ⊢ ( ( 𝐻  ∈  Grp  ∧  𝑆  ⊆  𝐵 )  →  ( 𝑆  ×  𝑆 )  =  ( ( Base ‘ 𝐻 )  ×  ( Base ‘ 𝐻 ) ) ) | 
						
							| 11 | 7 10 9 | foeq123d | ⊢ ( ( 𝐻  ∈  Grp  ∧  𝑆  ⊆  𝐵 )  →  ( 𝐹 : ( 𝑆  ×  𝑆 ) –onto→ 𝑆  ↔  𝐹 : ( ( Base ‘ 𝐻 )  ×  ( Base ‘ 𝐻 ) ) –onto→ ( Base ‘ 𝐻 ) ) ) | 
						
							| 12 | 6 11 | mpbird | ⊢ ( ( 𝐻  ∈  Grp  ∧  𝑆  ⊆  𝐵 )  →  𝐹 : ( 𝑆  ×  𝑆 ) –onto→ 𝑆 ) | 
						
							| 13 |  | forn | ⊢ ( 𝐹 : ( 𝑆  ×  𝑆 ) –onto→ 𝑆  →  ran  𝐹  =  𝑆 ) | 
						
							| 14 | 13 | eqcomd | ⊢ ( 𝐹 : ( 𝑆  ×  𝑆 ) –onto→ 𝑆  →  𝑆  =  ran  𝐹 ) | 
						
							| 15 | 12 14 | syl | ⊢ ( ( 𝐻  ∈  Grp  ∧  𝑆  ⊆  𝐵 )  →  𝑆  =  ran  𝐹 ) |