| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ressply1.s |
|- S = ( Poly1 ` R ) |
| 2 |
|
ressply1.h |
|- H = ( R |`s T ) |
| 3 |
|
ressply1.u |
|- U = ( Poly1 ` H ) |
| 4 |
|
ressply1.b |
|- B = ( Base ` U ) |
| 5 |
|
ressply1.2 |
|- ( ph -> T e. ( SubRing ` R ) ) |
| 6 |
|
ressply1.p |
|- P = ( S |`s B ) |
| 7 |
|
eqid |
|- ( 1o mPoly R ) = ( 1o mPoly R ) |
| 8 |
|
eqid |
|- ( 1o mPoly H ) = ( 1o mPoly H ) |
| 9 |
3 4
|
ply1bas |
|- B = ( Base ` ( 1o mPoly H ) ) |
| 10 |
|
1on |
|- 1o e. On |
| 11 |
10
|
a1i |
|- ( ph -> 1o e. On ) |
| 12 |
|
eqid |
|- ( ( 1o mPoly R ) |`s B ) = ( ( 1o mPoly R ) |`s B ) |
| 13 |
7 2 8 9 11 5 12
|
ressmplmul |
|- ( ( ph /\ ( X e. B /\ Y e. B ) ) -> ( X ( .r ` ( 1o mPoly H ) ) Y ) = ( X ( .r ` ( ( 1o mPoly R ) |`s B ) ) Y ) ) |
| 14 |
|
eqid |
|- ( .r ` U ) = ( .r ` U ) |
| 15 |
3 8 14
|
ply1mulr |
|- ( .r ` U ) = ( .r ` ( 1o mPoly H ) ) |
| 16 |
15
|
oveqi |
|- ( X ( .r ` U ) Y ) = ( X ( .r ` ( 1o mPoly H ) ) Y ) |
| 17 |
|
eqid |
|- ( .r ` S ) = ( .r ` S ) |
| 18 |
1 7 17
|
ply1mulr |
|- ( .r ` S ) = ( .r ` ( 1o mPoly R ) ) |
| 19 |
4
|
fvexi |
|- B e. _V |
| 20 |
6 17
|
ressmulr |
|- ( B e. _V -> ( .r ` S ) = ( .r ` P ) ) |
| 21 |
19 20
|
ax-mp |
|- ( .r ` S ) = ( .r ` P ) |
| 22 |
|
eqid |
|- ( .r ` ( 1o mPoly R ) ) = ( .r ` ( 1o mPoly R ) ) |
| 23 |
12 22
|
ressmulr |
|- ( B e. _V -> ( .r ` ( 1o mPoly R ) ) = ( .r ` ( ( 1o mPoly R ) |`s B ) ) ) |
| 24 |
19 23
|
ax-mp |
|- ( .r ` ( 1o mPoly R ) ) = ( .r ` ( ( 1o mPoly R ) |`s B ) ) |
| 25 |
18 21 24
|
3eqtr3i |
|- ( .r ` P ) = ( .r ` ( ( 1o mPoly R ) |`s B ) ) |
| 26 |
25
|
oveqi |
|- ( X ( .r ` P ) Y ) = ( X ( .r ` ( ( 1o mPoly R ) |`s B ) ) Y ) |
| 27 |
13 16 26
|
3eqtr4g |
|- ( ( ph /\ ( X e. B /\ Y e. B ) ) -> ( X ( .r ` U ) Y ) = ( X ( .r ` P ) Y ) ) |