Metamath Proof Explorer


Theorem rhmsubcALTVcat

Description: The restriction of the category of non-unital rings to the set of unital ring homomorphisms is a category. (Contributed by AV, 4-Mar-2020) (New usage is discouraged.)

Ref Expression
Hypotheses rngcrescrhmALTV.u
|- ( ph -> U e. V )
rngcrescrhmALTV.c
|- C = ( RngCatALTV ` U )
rngcrescrhmALTV.r
|- ( ph -> R = ( Ring i^i U ) )
rngcrescrhmALTV.h
|- H = ( RingHom |` ( R X. R ) )
Assertion rhmsubcALTVcat
|- ( ph -> ( ( RngCatALTV ` U ) |`cat H ) e. Cat )

Proof

Step Hyp Ref Expression
1 rngcrescrhmALTV.u
 |-  ( ph -> U e. V )
2 rngcrescrhmALTV.c
 |-  C = ( RngCatALTV ` U )
3 rngcrescrhmALTV.r
 |-  ( ph -> R = ( Ring i^i U ) )
4 rngcrescrhmALTV.h
 |-  H = ( RingHom |` ( R X. R ) )
5 eqid
 |-  ( ( RngCatALTV ` U ) |`cat H ) = ( ( RngCatALTV ` U ) |`cat H )
6 1 2 3 4 rhmsubcALTV
 |-  ( ph -> H e. ( Subcat ` ( RngCatALTV ` U ) ) )
7 5 6 subccat
 |-  ( ph -> ( ( RngCatALTV ` U ) |`cat H ) e. Cat )