Description: The restriction of the category of non-unital rings to the set of unital ring homomorphisms is a category. (Contributed by AV, 4-Mar-2020) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rngcrescrhmALTV.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | |
rngcrescrhmALTV.c | ⊢ 𝐶 = ( RngCatALTV ‘ 𝑈 ) | ||
rngcrescrhmALTV.r | ⊢ ( 𝜑 → 𝑅 = ( Ring ∩ 𝑈 ) ) | ||
rngcrescrhmALTV.h | ⊢ 𝐻 = ( RingHom ↾ ( 𝑅 × 𝑅 ) ) | ||
Assertion | rhmsubcALTVcat | ⊢ ( 𝜑 → ( ( RngCatALTV ‘ 𝑈 ) ↾cat 𝐻 ) ∈ Cat ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rngcrescrhmALTV.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | |
2 | rngcrescrhmALTV.c | ⊢ 𝐶 = ( RngCatALTV ‘ 𝑈 ) | |
3 | rngcrescrhmALTV.r | ⊢ ( 𝜑 → 𝑅 = ( Ring ∩ 𝑈 ) ) | |
4 | rngcrescrhmALTV.h | ⊢ 𝐻 = ( RingHom ↾ ( 𝑅 × 𝑅 ) ) | |
5 | eqid | ⊢ ( ( RngCatALTV ‘ 𝑈 ) ↾cat 𝐻 ) = ( ( RngCatALTV ‘ 𝑈 ) ↾cat 𝐻 ) | |
6 | 1 2 3 4 | rhmsubcALTV | ⊢ ( 𝜑 → 𝐻 ∈ ( Subcat ‘ ( RngCatALTV ‘ 𝑈 ) ) ) |
7 | 5 6 | subccat | ⊢ ( 𝜑 → ( ( RngCatALTV ‘ 𝑈 ) ↾cat 𝐻 ) ∈ Cat ) |