Metamath Proof Explorer


Theorem rhmsubcALTVcat

Description: The restriction of the category of non-unital rings to the set of unital ring homomorphisms is a category. (Contributed by AV, 4-Mar-2020) (New usage is discouraged.)

Ref Expression
Hypotheses rngcrescrhmALTV.u ( 𝜑𝑈𝑉 )
rngcrescrhmALTV.c 𝐶 = ( RngCatALTV ‘ 𝑈 )
rngcrescrhmALTV.r ( 𝜑𝑅 = ( Ring ∩ 𝑈 ) )
rngcrescrhmALTV.h 𝐻 = ( RingHom ↾ ( 𝑅 × 𝑅 ) )
Assertion rhmsubcALTVcat ( 𝜑 → ( ( RngCatALTV ‘ 𝑈 ) ↾cat 𝐻 ) ∈ Cat )

Proof

Step Hyp Ref Expression
1 rngcrescrhmALTV.u ( 𝜑𝑈𝑉 )
2 rngcrescrhmALTV.c 𝐶 = ( RngCatALTV ‘ 𝑈 )
3 rngcrescrhmALTV.r ( 𝜑𝑅 = ( Ring ∩ 𝑈 ) )
4 rngcrescrhmALTV.h 𝐻 = ( RingHom ↾ ( 𝑅 × 𝑅 ) )
5 eqid ( ( RngCatALTV ‘ 𝑈 ) ↾cat 𝐻 ) = ( ( RngCatALTV ‘ 𝑈 ) ↾cat 𝐻 )
6 1 2 3 4 rhmsubcALTV ( 𝜑𝐻 ∈ ( Subcat ‘ ( RngCatALTV ‘ 𝑈 ) ) )
7 5 6 subccat ( 𝜑 → ( ( RngCatALTV ‘ 𝑈 ) ↾cat 𝐻 ) ∈ Cat )