Metamath Proof Explorer


Theorem rhmsubcALTVcat

Description: The restriction of the category of non-unital rings to the set of unital ring homomorphisms is a category. (Contributed by AV, 4-Mar-2020) (New usage is discouraged.)

Ref Expression
Hypotheses rngcrescrhmALTV.u φ U V
rngcrescrhmALTV.c C = RngCatALTV U
rngcrescrhmALTV.r φ R = Ring U
rngcrescrhmALTV.h H = RingHom R × R
Assertion rhmsubcALTVcat φ RngCatALTV U cat H Cat

Proof

Step Hyp Ref Expression
1 rngcrescrhmALTV.u φ U V
2 rngcrescrhmALTV.c C = RngCatALTV U
3 rngcrescrhmALTV.r φ R = Ring U
4 rngcrescrhmALTV.h H = RingHom R × R
5 eqid RngCatALTV U cat H = RngCatALTV U cat H
6 1 2 3 4 rhmsubcALTV φ H Subcat RngCatALTV U
7 5 6 subccat φ RngCatALTV U cat H Cat