Metamath Proof Explorer


Theorem rhmsubcALTV

Description: According to df-subc , the subcategories ( SubcatC ) of a category C are subsets of the homomorphisms of C (see subcssc and subcss2 ). Therefore, the set of unital ring homomorphisms is a "subcategory" of the category of non-unital rings. (Contributed by AV, 2-Mar-2020) (New usage is discouraged.)

Ref Expression
Hypotheses rngcrescrhmALTV.u φ U V
rngcrescrhmALTV.c C = RngCatALTV U
rngcrescrhmALTV.r φ R = Ring U
rngcrescrhmALTV.h H = RingHom R × R
Assertion rhmsubcALTV φ H Subcat RngCatALTV U

Proof

Step Hyp Ref Expression
1 rngcrescrhmALTV.u φ U V
2 rngcrescrhmALTV.c C = RngCatALTV U
3 rngcrescrhmALTV.r φ R = Ring U
4 rngcrescrhmALTV.h H = RingHom R × R
5 eqidd φ Rng U = Rng U
6 1 3 5 rhmsscrnghm φ RingHom R × R cat RngHomo Rng U × Rng U
7 4 a1i φ H = RingHom R × R
8 eqid RngCatALTV U = RngCatALTV U
9 eqid Rng U = Rng U
10 eqid Hom 𝑓 RngCatALTV U = Hom 𝑓 RngCatALTV U
11 8 9 1 10 rngchomrnghmresALTV φ Hom 𝑓 RngCatALTV U = RngHomo Rng U × Rng U
12 6 7 11 3brtr4d φ H cat Hom 𝑓 RngCatALTV U
13 1 2 3 4 rhmsubcALTVlem3 φ x R Id RngCatALTV U x x H x
14 1 2 3 4 rhmsubcALTVlem4 φ x R y R z R f x H y g y H z g x y comp RngCatALTV U z f x H z
15 14 ralrimivva φ x R y R z R f x H y g y H z g x y comp RngCatALTV U z f x H z
16 15 ralrimivva φ x R y R z R f x H y g y H z g x y comp RngCatALTV U z f x H z
17 13 16 jca φ x R Id RngCatALTV U x x H x y R z R f x H y g y H z g x y comp RngCatALTV U z f x H z
18 17 ralrimiva φ x R Id RngCatALTV U x x H x y R z R f x H y g y H z g x y comp RngCatALTV U z f x H z
19 eqid Id RngCatALTV U = Id RngCatALTV U
20 eqid comp RngCatALTV U = comp RngCatALTV U
21 8 rngccatALTV U V RngCatALTV U Cat
22 1 21 syl φ RngCatALTV U Cat
23 1 2 3 4 rhmsubcALTVlem1 φ H Fn R × R
24 10 19 20 22 23 issubc2 φ H Subcat RngCatALTV U H cat Hom 𝑓 RngCatALTV U x R Id RngCatALTV U x x H x y R z R f x H y g y H z g x y comp RngCatALTV U z f x H z
25 12 18 24 mpbir2and φ H Subcat RngCatALTV U